SMAQMD BACT CLEARINGHOUSE

CATEGORY TYPE:

COATING - ADHESIVES

BACT Category: MINOR SOURCE BACT

BACT Determination Number: 320 **BACT Determination Date: 11/16/2022 ACTIVE**

Equipment Information

Permit Number: N/A -- Generic BACT Determination **Equipment Description:** ADHESIVE APPLICATION Unit Size/Rating/Capacity: ≤ 7,404 LBS VOC/YEAR

Equipment Location:

District Contact: Jeff Quok

BACT Determination Information

email: jquok@airquality.org

Phone No.: (279) 207-1145

Standard: See Technology Description	
Technology Description:	Compliance with SMAQMD Rule 460(A) and BACT #320/321 VOC limits (see Tables 1-9 in BACT evaluation)
Basis:	Achieved in Practice
Standard:	See Technology Description
Technology Description:	For heaters < 1,200°F: 20 ppm or 0.024 lb/MMBtu For heaters ≥ 1,200°F: 30 ppm or 0.036 lb/MMBtu
Basis:	Achieved in Practice
Standard:	No standard
Technology Description:	
Basis:	
Standard:	Spray booth with dry filters or waterwash
Technology Description:	
Basis:	Achieved in Practice
Standard:	Spray booth with dry filters or waterwash
Technology Description:	
Basis:	Achieved in Practice
Standard:	For heaters, low NOx burner, 400 ppmvd @ 3% O2
Technology Description:	
Basis:	Achieved in Practice
	Technology Description: Basis: Standard: Technology Description: Basis:

Comments T-BACT is compliance with SMAQMD Rule 460(A) BACT #320/321 VOC limits (see Tables 1-9 in BACT Evaluation) and emission limits of Table 3 to Subpart JJ of Part 63.

(A)Compliance with SMAQMD Rule 460 includes use of exemptions of this rule. If the operation qualifies for exemption of VOC content limits the BACT VOC content limits are exempt as well.

Printed: 11/17/2022

SMAQMD BACT CLEARINGHOUSE

CATEGORY TYPE:

COATING - ADHESIVES

BACT Category: MINOR SOURCE BACT

BACT Determination Number: 321 **BACT Determination Date: 11/16/2022 ACTIVE**

Equipment Information

Permit Number: N/A -- Generic BACT Determination **Equipment Description:** ADHESIVE APPLICATION Unit Size/Rating/Capacity: > 7,404 LBS VOC/YEAR

Equipment Location:

District Contact: Jeff Quok

BACT Determination Information

email: jquok@airquality.org

Phone No.: (279) 207-1145

ROCs	OCs Standard: See Technology Description				
Technology Description: Compliance with SMAQMD Rule 460(A) and BACT 320/321 VOC limits (see Tables of control system with ≥90% collection efficiency and ≥95% destruction efficiency		Compliance with SMAQMD Rule 460(A) and BACT 320/321 VOC limits (see Tables 1-9 in BACT Evaluation) and VOC control system with ≥90% collection efficiency and ≥95% destruction efficiency			
Basis:		Cost Effective			
NOx	Standard: See Technology Description				
	Technology Description:	For heaters < 1,200°F: 20 ppm or 0.024 lb/MMBtu For heaters ≥ 1,200°F: 30 ppm or 0.036 lb/MMBtu			
	Basis:	Achieved in Practice			
SOx	Standard:	No standard			
	Technology Description:				
	Basis:				
PM10	Standard:	Spray booth with dry filters or waterwash			
	Technology Description:				
	Basis:	Achieved in Practice			
PM2.5	5 Standard: Spray booth with dry filters or waterwash				
	Technology Description:				
	Basis:	Achieved in Practice			
СО	Standard:	For heaters, low NOx burner, 400 ppmvd @ 3% O2			
	Technology Description:				
	Basis:	Achieved in Practice			

Comments T-BACT is compliance with SMAQMD Rule 460(A) BACT #320/321 VOC limits (see Tables 1-9 in BACT evaluation), emission limits of Table 3 to Subpart JJ of Part 63 and VOC control system with ≥90% collection efficiency and ≥ 95% destruction efficiency.

(A)Compliance with SMAQMD Rule 460 includes use of exemptions of this rule. If the operation qualifies for exemption of VOC content limits the BACT VOC content limits are exempt as well.

Printed: 11/17/2022

BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION

DETERMINATION NO.: 320 & 321

DATE: November 16, 2022

ENGINEER: Jeffrey Quok

Category/General Equip

Description: Adhesive Application Operations

Equipment Specific Description: Adhesives Application in a Spray Booth

≤ 7,404 lbs VOC/year (BACT #320) > 7,404 lbs VOC/year (BACT #321)

Equipment Size/Rating: Minor Source

Previous BACT Det. No.: 226 & 227

This BACT determination will update determinations #226 & #227 for adhesive application operations. This BACT will apply to all adhesive operations that are subject to Rule 460. Adhesive operations include the use of adhesives and sealants and associated primers, and from related surface preparation solvents, cleanup solvents, and strippers. Per Rule 460, an adhesive is any material that is used to bond one surface to another surface by attachment.

BACT/T-BACT ANALYSIS

A. ACHIEVED IN PRACTICE (Rule 202, §205.1a):

The following control technologies are currently employed as BACT/T-BACT for plastic parts coating operations by the following agencies and air pollution control districts:

US EPA

BACT

Source: EPA RACT/BACT/LAER Clearinghouse

Adhesive Application Operation		
voc	No standard	
NOx	No standard	
SOx	No standard	
PM10	No standard	
PM2.5	No standard	
СО	No standard	

BACT Determination
Adhesive Application Operations
Page 2 of 43

T-BACT

There are no T-BACT standards published in the clearinghouse for this category.

RULE REQUIREMENTS

<u>40 CFR 63 Subpart JJ – National Emission Standards for Wood furniture Manufacturing</u> Operations

This regulation applies for facilities that are engaged, either in part or in whole, in the manufacture of wood furniture or wood furniture components and that are located at a plant site that is a major source as defined in 40 CFR subpart A, §63.2 Since this BACT determination is only for minor sources, this NESHAP is not applicable.

Subpart JJ limits volatile hazardous air pollutants (VHAP) of finishing operations and contact adhesives and also limits the VOC strippable spray booth material. Only the limits that are applicable to adhesives will be shown. The limits can be seen in the table below.

Table 3 to Subpart JJ of Part 63—Summary of Emission Limits

Emission point	Existing source	New source
Contact Adhesives:		
(a) Use compliant contact adhesives (maximum kg VHAP/kg solids [lb VHAP/lb solids], as applied) based on following criteria:		
i. For aerosol adhesives, and for contact adhesives applied to nonporous substrates	^a NA	^a NA
ii. For foam adhesives used in products that meet flammability requirements	1.8	0.2
iii. For all other contact adhesives (including foam adhesives used in products that do not meet flammability requirements); or		0.2
(b) Use a control device		^b 0.2
All Contact Adhesives:		
(a) Achieve total free formaldehyde emissions across all finishing operations and contact adhesives, lb per rolling 12 month period, as applied		400
(b) Use coatings and contact adhesives only if they are low-formaldehyde coatings and contact adhesives		°1.0

a. There is no limit on the VHAP content of these adhesives.

b. The control device must operate at an efficiency that is equivalent to no greater than 1.0 kilogram (or 0.2 kilogram) of VHAP being emitted from the affected emission source per kilogram of solids used.

c. The limits refer to the formaldehyde content by weight of the coating or contact adhesive, as specified on certified product data sheets.

California Air Resources Board (CARB)

BACT

Source: <u>CARB BACT Clearinghouse</u> CARB BACT Guidelines Search

There are no applicable BACT determinations posted on CARB's BACT clearinghouse.

The CARB BACT Guidelines search contains SJVAPCD BACT Guidelines 4.9.1-4.9.14. See the SJVAPCD BACT summary for full BACT review.

T-BACT

There are no T-BACT standards published in the clearinghouse for this category.

RULE REQUIREMENTS

There are no statewide rule requirements for adhesive application operations.

Sacramento Metropolitan AQMD

BACT

Source: SMAQMD BACT Clearinghouse

BACT #226: Adhesive Application < 1,170 lbs VOC/month and ≤ 4,019 lbs VOC/per year		
voc	Compliance with adhesive BACT VOC limits (see Tables 1-9 below)	
NOx	No standard	
SOx	No standard	
PM10	Spray booth with dry filters or waterwash	
PM2.5	Spray booth with dry filters or waterwash	
со	No standard	

BACT #227: Adhesive Application ≥ 1,170 lbs VOC/month and > 4,019 lbs VOC/per year		
voc	Compliance with adhesive BACT VOC limits (see Tables 1-9 below) and VOC control system with ≥ 90% collection efficiency and ≥ 95% destruction efficiency (Technologically Feasible)	
NOx	No standard	
SOx	No standard	
PM10	Spray booth with dry filters or waterwash	
PM2.5	Spray booth with dry filters or waterwash	
СО	No standard	

Table 1 Adhesives				
Adhesive	VOC Limits g/I (lbs/gal)	Source		
Architectural Adhesive Applications:				
Multipurpose Construction Adhesive	70 (0.6)	SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21		
Structural Wood Member Adhesive	140 (1.2)	SCAQMD Rule 1168, SJVAPCD Rule 4653, SDCAPCD Rule 67.21		
Ceramic Tile Installation Adhesive	65 (0.5)	SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21		
Cove Base Installation Adhesive	50 (0.4)	SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21		
Dry Wall and/or Panel Adhesive	50 (0.4)	SJVAPCD Rule 4653, SCAQMD Rule 1168		
Flooring Adhesives:				
All Other Indoor or Outdoor Floor Covering Adhesive	50 (0.4)	SCAQMD Rule 1168		
Ceramic Floor Tile Installation	65 (0.5)	SCAQMD Rule 1168, SJVAPCD Rule 4653		
Indoor Carpet Adhesive	50 (0.4)	SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21		
Carpet Pad Adhesive	50 (0.4)	SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21		
Rubber Flooring Adhesive	60 (0.5)	SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21		
Wood Flooring Adhesive	20 (0.2)	SCAQMD Rule 1168,		
Subfloor Adhesive	50 (0.4)	SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21		
VCT and Asphalt Tile Adhesive	50 (0.4)	SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21		
Roofing Adhesives:				
Single-Ply Roof Membrane Installation/Repair Adhesive (A)	200 (1.7)	SCAQMD 1 Rule 1168		
All Other Roof Adhesives	200 (1.7)	SCAQMD Rule 1168		
Structural Glazing Adhesive (A)	100 (0.8)	SMAQMD Rule 460, SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21, BAAQMD Rule 51		

Table 1 Adhesives				
Adhesive	VOC Limits g/l (lbs/gal)	Source		
Plastic Welding Products:				
ABS Welding Adhesive	325 (2.7)	SJVAPCD Rule 4653, SCAQMD Rule 1168		
Cellulosic Plastic Welding Adhesive	100 (0.8)	SDCAPCD Rule 67.21		
CPVC Welding Adhesive	490 (4.1)	SMAQMD Rule 460, SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21, BAAQMD Rule 51		
PVC Welding Adhesive	425 (3.5)	SCAQMD Rule 1168		
ABS to PVC Transition Cement	510 (4.3)	SCAQMD Rule 1168		
All Other Plastic Cement Welding Adhesive	100 (0.8)	SCAQMD Rule 1168		
Miscellaneous Adhesives:				
Metal to Urethane/Rubber Molding or Casting Adhesive	250 (2.1)	SMAQMD Rule 460		
Thin Metal Laminating Adhesive (A)	780 (6.5)	SCAQMD Rule 1168, SMAQMD Rule 460, SJVAPCD Rule 4653, SDCAPCD Rule 67.21, BAAQMD Rule 51		
Tire Tread Adhesive (A)	100 (0.8)	SMAQMD Rule 460, SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21, BAAQMD Rule 51		
Top and Trim Adhesive	250 (2.1)	SCAQMD Rule 1168		
Waterproof Resorcinol Glue (A)	170 (1.4)	SCAQMD Rule 1168, SMAQMD Rule 460, SJVAPCD Rule 4653, SDCAPCD Rule 67.21, BAAQMD Rule 51		
Computer Diskette Jacket Manufacturing Adhesive	350 (2.9)	SCAQMD Rule 1168		
All Other Specialty Adhesives	250 (2.1)	SCAQMD Rule 1168		
Adhesive Application Process – Wooden Door Assembly, Roller Applied	Use of an adhesive with a VOC content of 5.0 grams/liter (0.04 lb/gal) (less water and exempt compounds), or less	SJVAPCD BACT Guideline 4.9.8 (11/20/01)		

Table 1 Adhesives			
Adhesive	VOC Limits g/l (lbs/gal)	Source	
Adhesive Application Process – Vinyl Door and Window Assembly, Non-Spray Applied	Use of adhesive with a VOC content of 3.0 g/l (0.03 lb/gal)(less water and exempt compounds), or less for automated adhesive application and assembly processes	SJVAPCD BACT Guideline 4.9.9 (9/26/03)	
	2) Use of adhesive with VOC content of 76.5 g/l (0.6 lb/gal) (less water and exempt compounds), or less for manually applied adhesive operation when assembling		
Adhesive Application for Multi- Wall Packaging Manufacturing	1) Adhesives with a VOC content of ≤ 0.2 lb/gal (24.0 g/l) (excluding water and exempt compounds) for the adhesion of plastic film to porous material	SJVAPCD BACT Guideline 4.9.10 (11/18/04)	
	2) Adhesives with a VOC content of ≤ 0.13 lb/gal (15.6 g/l) (excluding water and exempt compounds) for the adhesion of porous materials		
Corrugated Box Gluer	Use of adhesives with a VOC content (less water and exempt compounds) not exceeding 0.044 lb/gal (5.3 g/l)	SJVAPCD BACT Guideline 4.9.12 (9/22/06)	
Corrugated Cardboard Manufacturing (Corrugator)	Adhesives – 0.015 lb/VOC/gal (1.8 g/l) (less water and exempt compounds)	SJVAPCD BACT Guideline 4.9.13 (1/30/15)	

⁽A) Also listed in EPA's Control Techniques Guidelines for Miscellaneous Industrial Adhesives (EPA-453/R-08-005 (9/08)).

Table 2 VOC Content for Adhesive Primers			
Type of Adhesive Primer	VOC Limits g/l (lbs/gal) (A)	Source	
Automotive Glass	700 (5.8)	SMAQMD Rule 460, SCAQMD Rule 1168, SJVAPCD Rule 4653, SDCAPCD Rule 67.21, BAAQMD Rule 51	
Plastic Cement Welding	400 (3.3)	SMAQMD Rule 460, SJVAPCD Rule 4653,	
Single-Ply Roof Membrane	250 (2.1)	SMAQMD Rule 460, SJVAPCD Rule 4653, SDCAPCD Rule 67.21	
Traffic Marking Tape	150 (1.3)	SMAQMD Rule 460, SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21, BAAQMD Rule 51	
Other	250 (2.1) (A)	SMAQMD Rule 460, SDCAPCD Rule 67.21, BAAQMD Rule 51	

⁽A) Also listed in EPA's Control Techniques Guidelines for Miscellaneous Industrial Adhesives (EPA-453/R-08-005 (9/08)).

Table 3 VOC Content for Contact Adhesives				
Type of Contact Adhesive VOC Limits g/l (lbs/gal) Source				
Contact Adhesive	80 (0.7)	SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21		
Contact Adhesive – Specialty Substrate	250 (2.1)	SMAQMD Rule 460, SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21		

Table 4 VOC Content for Sealants			
Type of Sealant	VOC Limits g/l (lbs/gal)	Source	
Architectural			
Clear, Paintable, and Immediately Water-Resistant Sealant	380 (3.2)	SCAQMD Rule 1168	
Grout	65 (0.5)	SCAQMD Rule 1168	
Foam Sealant	250 (2.1)	SCAQMD Rule 1168	
Roadway Sealant	250 (2.1)	SMAQMD Rule 460, SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21, BAAQMD Rule 51	

Table 4 VOC Content for Sealants		
Type of Sealant	VOC Limits g/l (lbs/gal)	Source
Non-Staining Plumbing Putty	150 (1.6)	SCAQMD Rule 1168
Roof Sealant	250 (2.1)	SCAQMD Rule 1168
All Other Architectural Sealants	50 (0.4)	SCAQMD Rule 1168
Marine Deck	760 (6.3)	SMAQMD Rule 460, SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21, BAAQMD Rule 51
All Other Sealants	250 (2.1)	SCAQMD Rule 1168

Table 5 VOC Content for Sealant Primers		
Type of Sealant Primer	VOC g/l (lbs/gal)	Source
Architectural Nonporous Porous	250 (2.1) 775 (6.5)	SMAQMD Rule 460, SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21, BAAQMD Rule 51
Marine Deck	760 (6.3)	SMAQMD Rule 460, SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21
Modified Bituminous	500 (4.2)	SJVAPCD Rule 4653, SCAQMD Rule 1168
Other	750 (6.3)	SMAQMD Rule 460, SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21, BAAQMD Rule 51

Table 6 VOC Content for Adhesives Applications onto Substrates			
Adhesive Applications onto Substrates	VOC Limits g/l (lbs/gal)	Source	
Flexible Vinyl (A)	250 (2.1)	SMAQMD Rule 460	
Fiberglass	80 (0.7)	SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21	
Metal (A)	30 (0.3)	SMAQMD Rule 460, SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21, BAAQMD Rule 51	
Porous Material	50 (0.4)	SMAQMD Rule 460, SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21, BAAQMD Rule 51	

Table 6 VOC Content for Adhesives Applications onto Substrates		
Adhesive Applications onto Substrates	VOC Limits g/l (lbs/gal)	Source
Rubber (A)	250 (2.1)	SMAQMD Rule 460
Wood (A)	30 (0.3)	SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21
Plastic Foam	50 (0.4)	SJVAPCD Rule 4653, SCAQMD Rule 1168
Reinforced Plastic Composite	200 (1.7)	SCAQMD Rule 1168, SJVAPCD Rule 4653
Other Substrates (A)	250 (2.1)	SMAQMD Rule 460, SJVAPCD Rule 4653, SDCAPCD Rule 67.21, BAAQMD Rule 51

⁽A) All of the listed substrates and limits, except fiberglass, are listed in EPA's Control Techniques Guidelines for Miscellaneous Industrial Adhesives (EPA-453/R-08-005 (9/08)).

Table 7 Maximum VOC Content Percentages for Aerosol Adhesives (Percent by VOC by Weight)		
Type of Solvent Cleaning Operation	VOC Content Limit (Percent of VOC by Weight)	Source
Adhesives – Aerosol Mist Spray Adhesives Web Spray Adhesives	65% 55%	SMAQMD Rule 460
Special Purpose Spray Adhesives Mounting, Automotive Engine Compartment, and Flexible Vinyl Adhesives Polystyrene Foam and Automobile Headliner Adhesives Polyolefin and Laminate Repair/Edge banding Adhesives	70% 65% 60%	SMAQMD Rule 460

Table 8 Solvent Cleaning VOC Limits			
Type of Solvent Cleaning Operation VOC Content Limit grams of VOC/liter of material (lb/gal) Source			
Product cleaning during manufacturing process or surface preparation for adhesive application			
General 25 SJVAPCD Rule 4653 (0.2)			
Repair and maintenance cleaning	25 (0.2)	SJVAPCD Rule 4653	

Table 8 Solvent Cleaning VOC Limits		
Type of Solvent Cleaning Operation	VOC Content Limit grams of VOC/liter of material (lb/gal)	Source
Cleaning of adhesive application equipment	25 (0.2)	SJVAPCD Rule 4653

Table 9 Stripper VOC Limits		
	VOC Content g/l (lbs/gal) including water and exempt compounds	VOC Composite Partial Pressure Millimeters of Mercury at 20 °C (68 °F)
Adhesive or Sealant Products on Wood	≤ 70 (≤ 0.6) (A)	≤ 2 (B)
Adhesive or Sealant Products on Substrates		≤ 9.5 (B)

- (A) VOC limit is based on SDCAPCD Regulation IV, Rule 67.21.(B) VOC vapor pressure limit is based on SMAQMD Regulation IV, Rule 460.

T-BACT

SMAQMD BACT Clearinghouse

T-BACT #226: Adhesive Application < 1,170 lbs VOC/month and ≤ 4,019 lbs VOC/per year	
Organic HAP/VHAP	Compliance with adhesives, sealants, solvents, and strippers BACT VOC limits (see Tables 1-9 above) and emission limits of Table 3 to Subpart JJ of Part 63.

T-BACT #227: Adhesive Application ≥ 1,170 lbs VOC/month or > 4,019 lbs VOC/per year		
Organic HAP/VHAP	Compliance with adhesives, sealants, solvents, and strippers BACT VOC limits (see Tables 1-9 above), emission limits of Table 3 to Subpart JJ of Part 63 and VOC control system with ≥ 90% collection efficiency and ≥ 95% destruction efficiency.	

RULE REQUIREMENTS

Rule 460 – Adhesive and Sealants (Amended 11/30/2000)

This rule applies to adhesives and sealants and associated primers; and from related surface preparation solvents, cleanup solvents, and strippers. VOC Content Limits:

Table 1		
Adhesive	VOC Limits g/I(lbs/gal)	
ABS Welding Adhesive	400 (3.3)	
Ceramic Tile Installation Adhesive	130 (1.1)	
Computer Diskette Jacket Manufacturing Adhesive	850 (6.9)	
Cove Base Installation Adhesive	150 (1.2)	
CPVC Welding Adhesive	490 (4.0)	
Indoor Floor Covering Installation Adhesive	150 (1.2)	
Metal to Urethane/Rubber Molding or Casting Adhesive	250 (2.0)	
Multipurpose Construction Adhesive	200 (1.6)	
Non-Membrane Roof Installation/Repair Adhesive	300 (2.5)	
Outdoor Floor Covering Installation Adhesive	250 (2.0)	
PVC Welding Adhesive	510 (4.2)	
Single-Ply Roof Membrane Installation/Repair Adhesive	250 (2.0)	
Structural Glazing Adhesive	100 (0.8)	
Thin Metal Laminating Adhesive	780 (6.4)	
Tire Retread Adhesive	100 (0.8)	
Perimeter Bonded Sheet Vinyl Flooring Installation Adhesive	660 (5.4)	
Waterproof Resorcinol Glue	170 (1.4)	
Other Plastic Cement Welding Adhesive	450 (3.7)	

Table 2 VOC Content for Adhesive Primers		
Type of Adhesive Primer VOC Limits g/I(lbs/		
Automotive Glass	700 (5.7)	
Plastic Cement Welding	400 (3.3)	
Single-Ply Roof Membrane	250 (2.0)	
Traffic Marking Tape	150 (1.2)	
Other	250 (2.0)	

Table 3 VOC Content for Contact Adhesives	
Type of Contact Adhesive	VOC Limits g/l(lbs/gal)
Contact Adhesive	250 (2.0)
Contact Adhesive – Specialty Substrate	250 (2.0)

Table 4 VOC Content for Sealants		
Type of Sealant	VOC Limits g/l(lbs/gal)	
Architectural	250 (2.0)	
Marine Deck	760 (6.2)	
Nonmembrane Roof Installation/Repair	300 (2.5)	
Roadway Sealant	250 (2.0)	
Single-Ply Roof Membrane Sealant	450 (3.7)	
Other	420 (3.4)	

Table 5 VOC Content for Sealant Primers	
Type of Sealant Primer	VOC g/l(lbs/gal)
Architectural Nonporous Porous	250 (2.0) 775 (6.3)
Marine Deck	760 (6.2)
Other	750 (6.1)

Table 6 VOC Content for Adhesives Applications onto Substrates	
Adhesive Applications onto Substrates	VOC Limits g/l(lbs/gal)
Flexible Vinyl	250 (2.0)
Fiberglass	200 (1.6)
Metal	30 (0.2)
Porous Material	120 (1.0)
Rubber	250 (2.0)
Other Substrates	250 (2.0)

Table 8 VOC Content of Solvents for Surface Preparation, Cleanup, and Stripping		
Adhesive Applications onto Substrates	VOC Limits g/l(lbs/gal) Including water and exempt compounds	VOC Composite Partial Pressure Millimeters of Mercury at 20 °C (68 °F)
SUBSTRATE PREPARATION: Single-Ply Roof Membrane Installation/Repair		≤ 45
SUBSTRATE PREPARATION: Electronic Components	≤ 900 (≤ 7.3)	≤ 33
SUBSTRATE PREPARATION: Medical Devices	≤ 900 (≤ 7.3)	≤ 33
SUBSTRATE PREPARATION: Other Substrates	≤ 70 (≤ 0.6)	
CLEANUP: Cleaning a Spray Gun in an Enclosed Gun Cleaner		< 45
CLEANUP: Soaking of Application Equipment in a Closed Container		≤ 9.5
CLEANUP: Cleaning of Application Equipment —No Closed Container, No Enclosed Gun Cleaner	≤ 70 (≤ 0.6)	
CLEANUP: Cleaning of Equipment Other Than Adhesive or Sealant Product Application Equipment		< 45
STRIPPING: Adhesive or Sealant Products on Wood	< 350	≤2
STRIPPING: Adhesive or Sealant Products on Substrates		≤ 9.5

Rule 419 – NOx from Miscellaneous Combustion Units (10/25/18)

This Rule applies to any miscellaneous combustion unit or cooking unit with a total rated heat input capacity of 2 MMBtu/hr or greater that is located at a major stationary source of NOx and to any miscellaneous combustion unit or cooking unit with a total rated heat input capacity of 5 MMBtu/hr or greater that is not located at a major stationary source of NOx.

The requirements of this rule do not apply to combustion equipment where its primary function is to operate as an air pollution control device including, but not limited to, afterburners, catalytic oxidizers, thermal oxidizers, or vapor incinerators.

TABLE 1: Miscellaneous Combustion Units Emission Limits Expressed As PPMV, corrected to 3% O₂			
Equipment Category	ppmv, correc	Limit cted to 3% O ₂ MBtu)	CO Limit ppmv, corrected to 3% O₂ (lb/MMBtu)
Gaseous Fuel-Fired	Process Temperature		All Tomporotures
Equipment	< 1,200°F	≥ 1,200 °F	All Temperatures
Oven, Dehydrator, Dryer, Heater, or Kiln	30 (0.036)	60 (0.073)	400 (0.30)

South Coast AQMD

BACT

Source: SCAQMD BACT Guidelines (Part D) for Non-Major Polluting Facilities, page 117 & 118 (2/5/2021)

Spray Booth – Other Types		
VOC	 VOC Emissions < 14,040 lb/year (<1,170 lb/month) (A) A. Compliance with Applicable SCAQMD Regulation XI Rules VOC Emissions ≥ 14,040 lb/year (≥1,170 lb/month) (A) A. Compliance with Applicable SCAQMD Regulation XI Rules, and VOC Control System with ≥ 90% Collection Efficiency and ≥ 95% Destruction Efficiency, or B. Use of Super Compliant Materials (< 5% VOC by weight): or C. Use of Low-VOC Materials Resulting in an Equivalent Emission Reduction 	
NOx	If booth has a make-up air unit or a heater; compliance with Rule 1147	
SOx	No standard	
PM10	Dry filters or water wash	
PM2.5	No Standard	
со	No standard	

⁽A) Monthly emissions have been annualized to be consistent with District methodology for determining cost effectiveness for add-on control (Cost per ton per year of emissions reduced).

T-BACT

The above BACT determination did not address T-BACT.

RULE REQUIREMENTS

Regulation IX, Rule 1168 – Adhesive and Sealant Applications (amended 10/06/2017)

This rule applies to adhesives, adhesive primers, sealants, or sealant primers.

VOC Content Limits:

Architectural Applications	VOC Limits g/l
Building Envelope Membrane Adhesive	250
Structural Wood Member Adhesive	140
Indoor Carpet Adhesives	50
Carpet Pad Adhesives	50
All Other Indoor or Outdoor Floor Covering Adhesives	50
Wood Flooring Adhesive	100
Rubber Floor Adhesives	60
Subfloor Adhesives	50
Ceramic Tile Adhesives	65
VCT and Asphalt Tile Adhesives	50
Dry Wall and Panel Adhesives	50
Cove Base Adhesives	50
Multipurpose Construction Adhesives	70
Structural Glazing Adhesives	100
Roof Adhesives	250

Specialty Applications	VOC Limits g/I
Computer Diskette Manufacturing Contact Adhesive	350
Contact Adhesive	80
Edge Glue Adhesive	250
Plastic Welding Cement	
ABS Welding	325
ABS to PVC Transition Cement	510
CPVC Welding	490
PVC Welding	510
All Other Plastic Cement Welding	100
Rubber Vulcanization Adhesive	850

Specialty Applications	VOC Limits g/l
Special Purpose Contact Adhesive	250
Thin Metal Laminating Adhesive	780
Tire Tread Adhesive	100
Top and Trim Adhesive	540
Waterproof Resorcinol Glue	170
All Other Adhesives	250

Substrate Specific Applications	VOC Limits g/l
Metal to Metal	30
Plastic Foams	50
Porous Material (except wood)	50
Wood	30
Fiberglass	80
Reinforced Plastic Composite	200

^{**} These limits apply to any adhesive, bonding primer or any other primer not regulated by the previous table.

Sealants	VOC Limits g/I
Architectural	
Clear, Paintable, and Immediately Water- Resistant Sealant	380
Foam Insulation	250
Foam Sealant	250
Grout	65
Roadway Sealant	250
Non-Staining Plumbing Putty	150
Roofing	
Single-Ply Roof Membrane	450
All Other Roof Sealants	300
All Other Architectural Sealants	50
Marine Deck	760
All Other Sealants	420

Adhesive Primers	VOC Limits g/l
Plastic	550
Pressure Sensitive	785
Traffic Marking Tape 150	
Vehicle glass 700	
All Other Adhesive Primers	250

Sealant Primers	VOC Limits g/l
Architectural Nonporous Porous	250 775
Modified Bituminous	500
Marine Deck	760
Other	750

Reg XI, Rule 1147 – NOx Reductions from Miscellaneous Sources (Last amended 5/6/2022)

This rule applies to ovens, dryers, dehydrators, heaters, kilns, calciners, furnaces, crematories, incinerators, heated pots, cookers, roasters, fryers, closed and open heated tanks and evaporators, distillation units, afterburners, degassing units, vapor incinerators, catalytic or thermal oxidizers, soil and water remediation units and other combustion equipment with nitrogen oxide emissions that require a District permit and are not specifically required to comply with a nitrogen oxide emission limit by other District Regulation XI rules.

Equipment Category	Emission Limit PPMV @ 3% O ₂ , dry or pound/MMBtu heat input		
	NOx		со
	Process Te	emperature	
Oven, Dehydrator, Dryer, Heater, Kiln, Calciner, Cooker, Roaster, Furnace, or	< 1,200° F	≥ 1,200 ° F	1,000 ppmv
Heated Storage Tank	20 ppmv or 0.024 lb/MMBtu	30 ppmv or 0.036 lb/MMBtu	, , , , , , , , , , , , , , , , , , , ,

San Joaquin Valley APCD

BACT

Source: SJVAPCD BACT Guidelines

Source: SJVAPCD BACT Guideline 4.9.1 (8/21/20)

Adhesive	Adhesive Application Operation – Tire Retreading			
voc	Use of adhesives with a VOC content of 100 gram per liter (less water and exempt compounds) ^(A)			
NOx	No standard			
SOx	No standard			
PM10	No standard			
PM2.5	No standard			
со	No standard			

⁽A) Current Rule 4653 limit is equivalent.

Source: SJVAPCD BACT Guideline 4.9.2 (5/11/22)

Adhesive Application Operation – Rubber Parts and Products, Brush Applied *Rescinded*	
voc	This BACT was rescinded on 5/11/22
NOx	No standard
SOx	No standard
PM10	No standard
PM2.5	No standard
СО	No standard

Source: SJVAPCD BACT Guideline 4.9.3 (5/11/22)

Adhesive Application Process – Foam Products *Rescinded*	
VOC	This BACT was rescinded on 5/11/22
NOx	No standard
SOx	No standard
PM10	No standard
PM2.5	No standard
СО	No standard

Source: SJVAPCD BACT Guideline 4.9.4 (4/3/00)

Adhesive Application Process - Non-Porous Materials, Specialty Contact Adhesives, Spray Application		
voc	Using adhesives with a VOC content of 400 g/l or less (less water and exempt compounds)(A)	
NOx	No standard	
SOx	No standard	
PM10	No standard	
PM2.5	No standard	
СО	No standard	

(A) Current Rule 4653 limit is more restrictive.

Source: SJVAPCD BACT Guideline 4.9.5 (5/11/22)

Adhesive Application Process – Wooden Case Manufacturing *Rescinded*	
voc	This BACT was rescinded on 5/11/22
NOx	No standard
SOx	No standard
PM10	No standard
PM2.5	No standard
СО	No standard

Source: SJVAPCD BACT Guideline 4.9.7 (8/3/01)

Corrugated PVC Sheet Products – Special Contact Adhesive, Roller Applied		
voc	PVC welding adhesive compliant with District Rule 4653	
NOx	No standard	
SOx	No standard	
PM10	No standard	
PM2.5	No standard	
СО	No standard	

Source: SJVAPCD BACT Guideline 4.9.8 (11/20/01)

Adhesive Application Process – Wooden Door Assembly, Roller Applied			
voc	Use of an adhesive with a VOC content of 5.0 grams/liter (less water and exempt compounds), or less ^(A)		
NOx	No standard		
SOx	No standard		

Adhesive Application Process – Wooden Door Assembly, Roller Applied		
PM10	No standard	
PM2.5	No standard	
СО	No standard	

⁽A) This limit is more restrictive than Current Rule 4653.

Source: SJVAPCD BACT Guideline 4.9.9 (9/26/03)

Adhesive	Adhesive Application Process – Vinyl Door and Window Assembly, Non-Spray Applied		
voc	 Use of adhesive with a VOC content of 3.0 g/l (less water and exempt compounds), or less for automated adhesive application and assembly processes^(A) Use of adhesive with VOC content of 76.5 g/l (less water and exempt compounds), or less for manually applied adhesive operation when assembling^(A) 		
NOx	No standard		
SOx	No standard		
PM10	No standard		
PM2.5	No standard		
СО	No standard		

⁽A) These limits are more restrictive than Current Rule 4653.

Source: SJVAPCD BACT Guideline 4.9.10 (11/18/04)

Adhesive	Adhesive Application for Multi-Wall Packaging Manufacturing	
VOC	Adhesives with a VOC content of \leq 0.2 lb/gal (excluding water and exempt compounds) the adhesion of plastic film to porous material ^(A)	
	Adhesives with a VOC content of ≤ 0.13 lb/gal (excluding water and exempt compounds) for the adhesion of porous materials ^(A)	
NOx	No standard	
SOx	No standard	
PM10	No standard	
PM2.5	No standard	
СО	No standard	

⁽A) These limits are more restrictive than Current Rule 4653.

Source: SJVAPCD BACT Guideline 4.9.11 (11/3/05)

Adhesive Application Operation – Bonding of Fiberglass Boat Hulls and Decks, Non-Atomizing Application	
voc	Use of adhesives with VOC content of 80 grams/liter or less (less water and exempt compounds) ^(A)
NOx	No standard
SOx	No standard
PM10	No standard
PM2.5	No standard
со	No standard

(A) Current Rule 4653 limit is equivalent.

Source: SJVAPCD BACT Guideline 4.9.12 (8/29/18)

Corrugated Box Gluer		
voc	Use of adhesives with VOC content of 0.021 lb-VOC/gal (less water and exempt compounds) ^(A)	
NOx	No standard	
SOx	No standard	
PM10	No standard	
PM2.5	No standard	
со	No standard	

(A) This limit is more restrictive than Current Rule 4653.

Source: SJVAPCD BACT Guideline 4.9.13 (8/29/18)

Corrugated Board Manufacturing (Corrugator)		
voc	Adhesives – 0.015 lb-VOC/gal (less water and exempt compounds) ^(A)	
NOx	No standard	
SOx	No standard	
PM10	No standard	
PM2.5	No standard	
СО	No standard	

(A) This limit is more restrictive than Current Rule 4653.

Source: SJVAPCD BACT Guideline 4.9.14 (6/6/19)

Wood Parts and Products Subfloor Adhesive Application Operation	
voc	Use of adhesives and solvents with a VOC content and application methods compliant with District Rule 4653 (Adhesives and Sealants)
NOx	No standard
SOx	No standard
PM10	No standard
PM2.5	No standard
СО	No standard

T-BACT

The above BACT determinations did not address T-BACT

RULE REQUIREMENTS:

Rule 4653 – Adhesives and Sealants (Last amended 09/16/2010)

This Rule applies to the application of adhesive products, sealant products, and associated solvent cleaning operations.

VOC Content limits:

Table 2 - VOC Content Limits for Adhesive Products (Effective on and after January 1, 2012)		
	VOC limit (Grams Per Liter)	
Applications	Architectural Adhesive Products:	
Multipurpose Construction	70	
Ceramic Tile Adhesive	65	
Cove Base Installation	50	
Dry Wall and/or Panel Adhesive	50	
Flooring Adhesives:		
Floor Covering Installation	150	
Ceramic Floor Tile Installation	65	
Indoor Carpet Adhesive	50	
Carpet Pad Adhesive	50	
Outdoor Carpet Adhesive	150	
Rubber Flooring Adhesive	60	
Perimeter Bonded Sheet Flooring Installation	660	
Subfloor Adhesive	50	

Table 2 - VOC Content Limits for Adhesive Products (Effective on and after January 1, 2012)		
Applications	VOC limit (Grams Per Liter)	
Applications	Architectural Adhesive Products:	
VCT and Asphalt Tile Adhesive	50	
Wood Flooring Adhesive	100	
Roofing Adhesives:		
Single-Ply Roof Material Installation	250	
Non-Membrane Roof Adhesive	300	
Structural Glazing	100	
Structural Wood Member Adhesive	140	
Miscellaneous Adhesives:		
Contact Adhesive	80	
Contact Adhesive – Specialty	250	
Rubber Vulcanization Adhesive/Primer	850	
Tire Retread	100	
Motor Vehicle Adhesive	250	
Motor Vehicle Weather-strip Adhesive	750	
Traffic Marking Tape Adhesive/ Primer	150	
Top and Trim Adhesive	540	
Waterproof Resorcinol Glue	170	
Staple and Nail Manufacturing	640	
Thin Metal Laminating Adhesive	780	
Elastomeric Adhesive	750	
Flexible Vinyl Adhesive	250	

Table 2 - VOC Content Limits for Adhesive Products continued (Effective on and after January 1, 2012)		
Applications	VOC Limit (Grams per Liter)	
Plastic Welding Products		
ABS Welding Adhesive	325	
Cellulosic Plastic Welding Adhesive	100	
CPVC Welding Adhesive	490	
PVC Welding Adhesive	510	

Table 2 - VOC Content Limits for Adhesive Products continued (Effective on and after January 1, 2012)		
Applications VOC Limit (Grams per Liter)		
Styrene-Acrylonitrile Welding Adhesive	100	
Plastic Cement Welding Adhesive Primer	400	
Other Plastic Cement Welding Adhesive	250	
Adhesive Primers:		
Automotive Glass Primer	700	
Adhesive Primer	250	

Table 3 - VOC Content Limits for Adhesive Products (Effective on and after January 1, 2012)		
Materials Bonded	VOC Limit (Grams per Liter)	
Metal to Metal	30	
Porous Materials	50	
Plastic Foam	50	
Wood	30	
Pre-formed Rubber Products	250	
Reinforced Plastic Composite	200	
Fiberglass	80	
All other Substrates	250	

Table 4 - VOC Content Limits for Sealants		
Sealant	VOC Limit Effective on and after January 1, 2012. (Grams Per Liter)	
Architectural	250	
Marine Deck	760	
Non-membrane Roof	300	
Roadway	250	
Single-Ply Roof Membrane	450	
Other Sealants	420	

Table 5 - VOC Content Limits for Sealant Primers		
Sealant Primer	VOC Limit Effective on and after January 1, 2012. (Grams Per Liter)	
Architectural Non Porous	250	
Architectural Porous	775	
Modified Bituminous	500	
Marine Deck	760	
Other Sealant Primers	750	

Table 6 – VOC Limits for Organic Solvents Used in Cleaning Operations	
Type of Solvent Cleaning Operation	VOC Content Limit Grams of VOC/liter of material (lb/gal)
Products Cleaning During Manufacturing Process or Surface Preparation for Adhesive Application	
A. General	25 (0.21)
B. Surface Preparation Prior to Rubber Vulcanization Process	850 (7.1)
Repair and Maintenance Cleaning	25 (0.21)
Cleaning of Adhesive Application Equipment	25 (0.21)

San Diego County APCD

BACT

Source: NSR Requirements for BACT (6/2011) Page 3-2

Adhesive Application Operations (<10 gal/day)	
voc	Compliance with Rule 67.21, Adhesive Material Application Operations
NOx	No standard
SOx	No standard
PM10	Spray booth if used, shall be equipped with over spray filters.
PM2.5	Spray booth if used, shall be equipped with over spray filters.
со	No standard

^{**} The applicant has the option to limit the potential to emit (PE) to less than 10 lb/day for each pollutant in lieu of meeting the BACT requirements.

<u>T-BACT</u>
There are no T-BACT standards published in the clearinghouse for this category.

RULE REQUIREMENTS

Regulation 4, Rule 67.21 – Adhesive Material Application Operations (11/14/2008)

This rule is applicable to all adhesive material application operations. Adhesive material application operations include all steps involved in the application, drying, and/or curing of adhesive materials, and associated surface preparation, stripping, and cleanup materials, and the cleaning of application equipment.

VOC Content Limits:

Architectural Products	VOC Limits (grams/liter)
Architectural sealant	250
Architectural sealant primer for: - Non-porous materials - Porous materials	250 775
Ceramic tile installation adhesive	65
Cove base installation adhesive	50
Flooring adhesives: Indoor carpet or carpet pad adhesive Rubber flooring adhesive Subfloor adhesive VCT and asphalt tile adhesive Wood flooring adhesive Other floor covering adhesive	50 60 50 50 100 150
Multipurpose construction installation/repair adhesive	70
Non-membrane roof installation/repair adhesive/sealant	300
Perimeter bonding adhesive	660
Roadway sealant	250
Single-ply roof membrane installation/repair adhesive/primer	250
Single-ply roof membrane sealant	450
Structural glazing adhesive	100
Structural wood member adhesive	140
Traffic marking tape adhesive primer	150

Plastic Welding Products	VOC Limits (grams/liter)
ABS welding adhesive	400
CPVC welding adhesive	490
PVC welding adhesive	510
Plastic cement welding adhesive primer	650
Other plastic cement welding adhesives	510

Specialty Adhesive Materials	VOC Limits (grams/liter)
Automotive glass adhesive primer	700
Adhesive primers Computer diskette jacket manufacturing adhesive	850
Contact adhesive General Special	80 250
Elastomeric adhesive	750
Marine deck sealant/primer	760
Metal to elastomer molding or casting adhesive	850
Natural gas pipeline tape adhesive primer	600
Sheet rubber lining installation adhesive	850
Thin metal laminating adhesive	780
Tire retread adhesive	100
Top and Trim adhesive	540
Waterproof resorcinol glue	170

Substrate Specific Adhesives	VOC Limits (grams/liter)
Adhesives applied onto:	
Fiberglass Metal Porous material (except wood) Wood Other substrates	80 30 50 30 250

All Other Adhesive Materials	VOC Limits (grams/liter)
Adhesive primer	250
Sealants	420
Sealant primers	750

Surface preparation, stripping and cleanup materials are subject to the following:

- (i) The material contains 70 grams or less of VOC per liter of material; or
- (ii) The material has an initial boiling point of 190°C (374°F) or greater; or
- (iii) The material has a total VOC vapor pressure of 45 mm Hg or less, at 20°C (68°F).

Cleaning of application equipment is subject to the following:

- (i) The material contains 70 grams or less of VOC per liter of material; or
- (ii) The material has an initial boiling point of 190°C (374°F) or greater; or
- (iii) The material has a total VOC vapor pressure of 45 mm Hg or less, at 20°C (68°F); or

- (iv) The cleaning material is flushed or rinsed through the application equipment in a contained manner that will minimize evaporation into the atmosphere; or
- (v) The application equipment or equipment parts are cleaned in a container, which is open only when being accessed for adding, cleaning, or removing application equipment or when cleaning material is being added, provided the cleaned equipment or equipment parts are drained to the container until dripping ceases; or
- (vi) A system is used that totally encloses the component parts being cleaned during the washing, rinsing, and draining processes; or
- (vii) Other application equipment cleaning methods are used that are demonstrated to be as effective as any of the equipment described above in minimizing the VOC emissions to the atmosphere, provided that the method has been tested and approved in writing by the Air Pollution Control Officer prior to use.

Bay Area AQMD

BACT

Source: BAAQMD BACT Guideline

Adhesive Application Operation	
voc	No standard
NOx	No standard
SOx	No standard
PM10	No standard
PM2.5	No standard
со	No standard

T-BACT

There are no T-BACT standards published in the clearinghouse for this category.

RULE REQUIREMENTS

Regulation 8, Rule 51 – Adhesive and Sealant Products (last amended 7/17/2002)

This rule applies to adhesive and sealant products.

VOC Content Limits:

Architectural	VOC Limits (grams/liter)
Indoor Floor Covering Installation	150
Multipurpose Construction	200
Nonmembrane Roof Installation/Repair	300
Outdoor Floor Covering Installation	250

Architectural	VOC Limits (grams/liter)
Single-Ply Roof Material Installation/Repair	250
Structural Glazing	100
Ceramic Tile Installation	130
Cove Base Installation	150
Perimeter Bonded Sheet Vinyl Flooring Installation	660

Specialty	VOC Limits (grams/liter)
Computer Diskette Jacket Manufacturing	850
ABS Welding	400
CPVC Welding	490
PVC Welding	510
Other Plastic Welding	500
Thin Metal Laminating	780
Tire Retread	100
Rubber Vulcanization Bonding	850
Waterproof Resorcinol Glue	170
Immersible Product Manufacturing	650
Top and Trim Installation	540

Adhesive Primers	VOC Limits (grams/liter)
Automotive Glass Primer	700
Pavement Marking Tape Primer	150
Plastic Welding Primer	650
Other	250

Contact Bond Adhesives	VOC Limits (grams/liter)
Contact Bond Adhesive	250
Contact Bond Adhesive – Special Substrates	400

Adhesive Product, Substrate Limits	VOC Limits (grams/liter)
Metal	30
Porous Materials	120
Other Substrates	250

Sealant	VOC Limits (grams/liter)
Architectural	250
Marine Deck	760
Roadways	250
Single Ply Roof Material Installation/Repair	450
Nonmembrane Roof Installation/Repair	300
Other	420

Sealant Primer	VOC Limits (grams/liter)
Architectural - Nonporous	250
Architectural - Porous	775
Other	750

The following control technologies have been identified and are ranked based on stringency:

SMAQMD has not permitted an adhesive application operation with a VOC control system with ≥90% collection efficiency and ≥ 95% destruction efficiency. Therefore, the SMAQMD BACT Determination requiring add-on control will not be considered Achieved in Practice. SCAQMD has permitted an aerospace adhesive facility with add on control under A/N 272587 (http://www.aqmd.gov/docs/default-source/bact/laer-bact-determination-272587.pdf?sfvrsn=2). Therefore, SCAQMD BACT with add-on control will be considered Achieved in Practice.

s	UMMARY OF ACHIEVED IN PRACTICE CONTROL TECHNOLOGIES
VOC _{Controlled}	 VOC Emissions ≥ 1,170 lbs VOC/month [SCAQMD] A. Compliance with Applicable SCAQMD Regulation XI Rules, and VOC Control System with ≥ 90% Collection Efficiency and ≥ 95% Destruction Efficiency, or B. Use of Super Compliant Materials (< 5% VOC by weight): or C. Use of Low-VOC Materials Resulting in an Equivalent Emission Reduction
VOCuncontrolled	 Compliance with SMAQMD Rule 460^(A) and adhesive BACT VOC limits (see Tables 1-9 above) [SMAQMD] Compliance with SJVAPCD Rules and Regulations [SVJAPCD] Compliance with SCAQMD Rules and Regulations [SCAQMD] Compliance with SDAPCD Rules and Regulations [SDAPCD] Compliance with BAAQMD Rules and Regulations [BAAQMD]
NOx	 For heaters < 1,200° F: 20 ppm or 0.024 lb/MMBtu, for heaters ≥ 1,200° F: 30 ppm or 0.036 lb/MMBtu [SCAQMD] Low NOx burner, For heaters < 1,200° F: 30 ppmvd @ 3% O₂ or 0.036 lb/MMBtu, for heaters ≥ 1,200° F: 60 ppmvd @ 3% O₂ or 0.073 lb/MMBtu [SMAQMD] No Standard [SDCAPCD, BAAQMD, SJVAPCD]

SI	UMMARY OF ACHIEVED IN PRACTICE CONTROL TECHNOLOGIES
SOx	No standard [SMAQMD, SCAQMD, SJVAPCD, BAAQMD, SDCAPCD]
PM10	 Spray booth with dry filters or waterwash [SMAQMD, SCAQMD] Spray booth if used, shall be equipped with over spray filters [SDAPCD] No Standard [SJVACPD, BAAQMD]
PM2.5	 Spray booth with dry filters or waterwash [SMAQMD] Spray booth if used, shall be equipped with over spray filters [SDAPCD] No Standard [SCAQMD, SJVACPD, BAAQMD]
со	 For heaters, low NOx burner, 400 ppmvd @ 3% O₂ [SMAQMD] For heaters, low NOx burner, 1,000 ppmvd @ 3% O₂ [SCAQMD]
Organic HAP/VHAP (T-BACT)	 For VOC Emissions < 1,170 lbs VOC/month and ≤ 4,019 lbs VOC/per year Compliance with adhesives, sealants, solvents, and strippers BACT VOC limits (see Tables 1-9 above) and emission limits of Table 3 to Subpart JJ of Part 63. [SMAQMD] For VOC Emissions ≥ 1,170 lbs VOC/month or > 4,019 lbs VOC/per year Compliance with adhesives, sealants, solvents, and strippers BACT VOC limits (see Tables 1-9 above), emission limits of Table 3 to Subpart JJ of Part 63 and VOC control system with ≥ 90% collection efficiency and ≥ 95% destruction efficiency. [SMAQMD]

⁽A) Compliance with SMAQMD Rule 460 includes use of exemptions of this rule. If the operation qualifies for exemption of VOC content limits the BACT VOC content limits are exempt as well.

The following control technologies have been identified as the most stringent, achieved in practice control technologies:

BEST CONTROL TECHNOLOGIES ACHIEVED		
Pollutant	Standard	Source
VOC	For emissions < 1,170 lbs VOC/month or ≤ 4,019 lbs VOC/year (uncontrolled) 1. Compliance with SMAQMD Rule 460 ^(A) and adhesive BACT VOC limits (see Tables 1-9 above)	SMAQMD
	 For emissions ≥ 1,170 lbs VOC/month (controlled) Compliance with Applicable SCAQMD Regulation XI Rules, and VOC Control System with ≥ 90% Collection Efficiency and ≥ 95% Destruction Efficiency, or Use of Super Compliant Materials (< 5% VOC by weight): or Use of Low-VOC Materials Resulting in an Equivalent Emission Reduction 	SCAQMD
NOx	 For heaters < 1,200° F: 20 ppm or 0.024 lb/MMBtu For heaters ≥ 1,200 ° F: 30 ppm or 0.036 lb/MMBtu 	SCAQMD
SOx	No standard	
PM10	Spray booth with dry filters or waterwash	SMAQMD, SCAQMD
PM2.5	Spray booth with dry filters or waterwash	SMAQMD, SCAQMD
СО	For heaters, low NOx burner, 400 ppmvd @ 3% O ₂	SMAQMD
Organic HAP/VHAP (T-BACT)	For VOC Emissions < 1,170 lbs VOC/month and ≤ 4,019 lbs VOC/per year 1. Compliance with adhesives, sealants, solvents, and strippers BACT VOC limits (see Tables 1-9 above) and emission limits of Table 3 to Subpart JJ of Part 63. [SMAQMD] For VOC Emissions ≥ 1,170 lbs VOC/month or > 4,019 lbs VOC/per year 1. Compliance with adhesives, sealants, solvents, and strippers BACT VOC limits (see Tables 1-9 above), emission limits of Table 3 to Subpart JJ of Part 63 and VOC control system with ≥ 90% collection efficiency and ≥ 95% destruction efficiency. [SMAQMD]	SMAQMD

⁽A) Compliance with SMAQMD Rule 460 includes use of exemptions of this rule. If the operation qualifies for exemption of VOC content limits the BACT VOC content limits are exempt as well.

B. TECHNOLOGICALLY FEASIBLE AND COST EFFECTIVE (RULE 202, §205.1.b.)

Technologically Feasible Alternatives:

Any alternative basic equipment, fuel, process, emission control device or technique, singly or in combination, determined to be technologically feasible by the Air Pollution Control Officer.

The table below shows the technologically feasible alternatives identified as capable of reducing emissions beyond the levels determined to be "Achieved in Practice" as per Rule 202, §205.1.a.

Pollutant	Technologically Feasible Alternatives	
voc	 VOC Emissions ≥ 1,170 lbs VOC/month or ≥ 4,019 lbs VOC/year [SMAQMD] A. Compliance with adhesive BACT VOC limits (see Tables 1-9 above) and VOC control system with ≥ 90% collection efficiency and ≥ 95% destruction efficiency Carbon Adsorber Thermal Oxidizer 	
NOx	No other technologically feasible option identified	
SOx	No other technologically feasible option identified	
PM10	No other technologically feasible option identified	
PM2.5	No other technologically feasible option identified	
со	No other technologically feasible option identified	

SMAQMD previous BACT Determinations listed VOC control systems with $\geq 90\%$ collection efficiency and $\geq 95\%$ destruction efficiency as Technologically Feasible. Therefore, this BACT Determination will also consider this standard as technologically feasible since SMAQMD has not permitted any facilities with add-on control. VOC control systems with $\geq 90\%$ collection efficiency and $\geq 95\%$ destruction efficiency will be analyzed by evaluating carbon adsorbers and thermal oxidizers to determine the cost effective threshold below.

Cost Effective Determination:

After identifying the technologically feasible control options, a cost analysis is performed to take into consideration economic impacts for all technologically feasible controls identified.

Maximum Cost per Ton of Air Pollutants Controlled

1. A control technology is considered to be cost-effective if the cost of controlling one ton of that air pollutant is less than the limits specified below:

<u>Pollutant</u>	Maximum Cost (\$/ton)
VOC	17,500
NO_X	24,500
PM10	11,400
SO_X	18,300
CO	TBD if BACT triggered

Cost Effectiveness Analysis Summary

A previous cost effectiveness analysis determined that 4,019 lb VOC/year was the highest allowable uncontrolled emission rate that did not require any add-on control devices. The EPA has updated the cost manual for incinerators/oxidizers in 11/2017 and carbon adsorbers in 10/2018. Therefore, this BACT determination will revisit this limit in accordance with the updated EPA OAQPS Air Pollution Control Cost Manual. The electricity (13.80 cents/kWh) and natural gas (8.04 dollars/1,000 cubic feet) rates were based on a commercial application as approved by the District. The life of the equipment was based on the EPA cost manual recommendation. The interest rate was based on the previous 6-month average interest rate on United States Treasury Securities (based on the life of the equipment) and addition of two percentage points and rounding up to the next higher integer rate. The labor (Occupation Code 51-8099: Plant and System Operators - Other) and maintenance (Occupation Code 49-2094: electrical and electronics commercial and industrial equipment repairers) rates were based on data from the Bureau of Labor Statistics.

Carbon Adsorber:

As shown in Attachment C, the cost effectiveness for the add on carbon adsorber system to control VOC was calculated to be **\$17,503.69/ton** (see attached Paint Spray Booth for Plastic Coating Cost Effectiveness Analysis). The following basic parameters were used in the analysis.

Equipment Life = 15 years

Total Capital Investment = \$307,618

Direct Annual Cost = \$13,549 per year

Indirect Annual Cost = \$46,994 per year

Total Annual Cost = \$58,344 per year

VOC Removed = 3 tons per year

Cost of VOC Removal = \$17,509.23 per ton reduced

A detailed calculation of the cost effectiveness for VOC removal with a carbon absorber is shown in Attachment C. Uncontrolled VOC emissions of 7,404 lb/year or greater is the cost-effective threshold for control equipment using carbon absorption control technology

Thermal Oxidizer:

Equipment Life = 20 years

Direct Cost = \$193,478

Direct Annual Cost = \$73,514 per year

Indirect Annual Cost = \$134,493 per year

Total Annual Cost = \$208,007 per year

VOC Removed = 12.1 tons per year

Cost of VOC Removal = \$17,657 per ton reduced

A detailed calculation of the cost effectiveness for VOC removal with a thermal oxidizer is shown in Attachment C. Uncontrolled VOC emissions of 23,799 lb/year or greater is the cost-effective threshold for control equipment using thermal oxidation control technology.

<u>Conclusion</u>: In this analysis, different emission operating levels are presented with the corresponding total cost per ton of VOC controlled using either a carbon adsorption control or a thermal oxidizer. Uncontrolled VOC emission level of 7,404 lb per year or greater must be reached in order for the carbon adsorption control option to be cost effective. Uncontrolled VOC emission level of 23,799 lb per year or greater must be reached in order for a thermal oxidizer to be cost effective. The emissions levels for the cost effectiveness of controls are based on the District cost effective limit for VOC of \$17,500 per ton controlled.

With EPA's new cost data, the highest allowable uncontrolled emission rate to not require add-on control devices will be updated to 7,404 lb/year based on the cost of carbon adsorption.

C. SELECTION OF BACT:

Based on the review of SMAQMD, SCAQMD, SDCAPCD, BAAQMD, SJVAPCD, CARB, and EPA BACT Clearinghouses and cost effectiveness determinations, BACT for VOC, NOx, PM10, and PM2.5 will be the following:

BACT #320 for Adhesive Application Operations ≤ 7,404 pounds VOC per year			
Pollutant	Standard	Source	
VOC	Compliance with SMAQMD Rule 460 ^(A) and BACT #320 VOC limits (see Tables 1-9 below)	SMAQMD	
NOx	For heaters < 1,200° F: 20 ppm or 0.024 lb/MMBtu For heaters ≥ 1,200 ° F: 30 ppm or 0.036 lb/MMBtu	SCAQMD	
SOx	No standard		
PM10	Spray booth with dry filters or waterwash	SMAQMD, SCAQMD	
PM2.5	Spray booth with dry filters or waterwash	SMAQMD, SCAQMD	
co	For heaters, low NOx burner, 400 ppmvd @ 3% O ₂	SMAQMD	

⁽A) Compliance with SMAQMD Rule 460 includes use of exemptions of this rule. If the operation qualifies for exemption of VOC content limits the BACT VOC content limits are exempt as well.

BACT #321 for Adhesive Application Operations > 7,404 pounds per year			
Pollutant	Standard	Source	
voc	Compliance with SMAQMD Rule 460 ^(A) and BACT #321 VOC limits (see Tables 1-9 below) and VOC control system with ≥ 90% collection efficiency and ≥ 95% destruction efficiency	SMAQMD (Technologically Feasible and Cost Effective)	
NOx	For heaters < 1,200° F: 20 ppm or 0.024 lb/MMBtu For heaters ≥ 1,200 ° F: 30 ppm or 0.036 lb/MMBtu	SCAQMD	
SOx	No standard		
PM10	Spray booth with dry filters or waterwash	SMAQMD, SCAQMD	
PM2.5	Spray booth with dry filters or waterwash	SMAQMD, SCAQMD	
СО	For heaters, low NOx burner, 400 ppmvd @ 3% O ₂	SMAQMD	

⁽A) Compliance with SMAQMD Rule 460 includes use of exemptions of this rule. If the operation qualifies for exemption of VOC content limits the BACT VOC content limits are exempt as well.

D. SELECTION OF T-BACT:

Based on the review of SMAQMD, SCAQMD, SDCAPCD, BAAQMD, SJVAPCD, ARB, and EPA BACT Clearinghouses, T-BACT for Organic HAP/VHAP will be the following:

BACT #320 for Adhesive Application Operations ≤ 7,404 pounds VOC per year			
Pollutant	T-BACT Standard	Source	
Organic HAP/VHAP (T-BACT)	Compliance with SMAQMD Rule 460 ^(A) BACT #320 VOC limits (see Tables 1-9 below) and emission limits of Table 3 to Subpart JJ of Part 63.	SMAQMD	

⁽A) Compliance with SMAQMD Rule 460 includes use of exemptions of this rule. If the operation qualifies for exemption of VOC content limits the BACT VOC content limits are exempt as well.

BACT #321 for Adhesive Application Operations > 7,404 pounds per year			
Pollutant	T-BACT Standard	Source	
Organic HAP/VHAP (T-BACT)	Compliance with SMAQMD Rule $460^{(A)}$ BACT #321 VOC limits (see Tables 1-9 below), emission limits of Table 3 to Subpart JJ of Part 63 and VOC control system with \geq 90% collection efficiency and \geq 95% destruction efficiency.	SMAQMD	

⁽A) Compliance with SMAQMD Rule 460 includes use of exemptions of this rule. If the operation qualifies for exemption of VOC content limits the BACT VOC content limits are exempt as well.

Table 1 Adhesives		
Adhesive	VOC Limits g/I (lbs/gal)	Source
Architectural Adhesive Applic	ations:	
Multipurpose Construction Adhesive	70 (0.6)	SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21
Structural Wood Member Adhesive	140 (1.2)	SCAQMD Rule 1168, SJVAPCD Rule 4653, SDCAPCD Rule 67.21
Ceramic Tile Installation Adhesive	65 (0.5)	SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21
Cove Base Installation Adhesive	50 (0.4)	SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21
Dry Wall and/or Panel Adhesive	50 (0.4)	SJVAPCD Rule 4653, SCAQMD Rule 1168
Flooring Adhesives:		
All Other Indoor or Outdoor Floor Covering Adhesive	50 (0.4)	SCAQMD Rule 1168
Ceramic Floor Tile Installation	65 (0.5)	SCAQMD Rule 1168, SJVAPCD Rule 4653
Indoor Carpet Adhesive	50 (0.4)	SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21
Carpet Pad Adhesive	50 (0.4)	SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21
Rubber Flooring Adhesive	60 (0.5)	SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21
Wood Flooring Adhesive	20 (0.2)	SCAQMD Rule 1168
Subfloor Adhesive	50 (0.4)	SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21
VCT and Asphalt Tile Adhesive	50 (0.4)	SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21
Roofing Adhesives:		
Single-Ply Roof Membrane Installation/Repair Adhesive (A)	200 (1.7)	SCAQMD Rule 1168
All Other Roof Adhesives	200 (1.7)	SCAQMD Rule 1168

Table 1 Adhesives		
Adhesive	VOC Limits g/l (lbs/gal)	Source
Structural Glazing Adhesive (A)	100 (0.8)	SMAQMD Rule 460, SJVAPCD Ru 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21, BAAQMD Rule 51
stic Welding Products:		
ABS Welding Adhesive	325 (2.7)	SJVAPCD Rule 4653, SCAQMD Rule 1168
Cellulosic Plastic Welding Adhesive	100 (0.8)	SDCAPCD Rule 67.21
CPVC Welding Adhesive	490 (4.1)	SMAQMD Rule 460, SJVAPCD Ru 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21, BAAQMD Rule 51
PVC Welding Adhesive	425 (3.5)	SCAQMD Rule 1168
ABS to PVC Transition Cement	510 (4.3)	SCAQMD Rule 1168
All Other Plastic Cement Welding Adhesive	100 (0.8)	SCAQMD Rule 1168
scellaneous Adhesives:		
Metal to Urethane/Rubber Molding or Casting Adhesive	250 (2.1)	SMAQMD Rule 460
Thin Metal Laminating Adhesive (A)	780 (6.5)	SCAQMD Rule 1168, SMAQMD Rule 460, SJVAPCD Rule 4653, SDCAPCD Rule 67.21, BAAQMD Rule 51
Tire Tread Adhesive (A)	100 (0.8)	SMAQMD Rule 460, SJVAPCD Ru 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21, BAAQMD Rule 51
Top and Trim Adhesive	250 (2.1)	SCAQMD Rule 1168
Waterproof Resorcinol Glue (A)	170 (1.4)	SCAQMD Rule 1168, SMAQMD Rule 460, SJVAPCD Rule 4653, SDCAPCD Rule 67.21, BAAQMD Rule 51

Table 1 Adhesives		
Adhesive	VOC Limits g/l (lbs/gal)	Source
Computer Diskette Jacket Manufacturing Adhesive	350 (2.9)	SCAQMD Rule 1168
All Other Specialty Adhesives	250 (2.1)	SCAQMD Rule 1168
Adhesive Application Process – Wooden Door Assembly, Roller Applied	Use of an adhesive with a VOC content of 5.0 grams/liter (0.04 lb/gal) (less water and exempt compounds), or less	SJVAPCD BACT Guideline 4.9.8 (11/20/01)
Adhesive Application Process – Vinyl Door and Window Assembly, Non- Spray Applied	1) Use of adhesive with a VOC content of 3.0 g/l (0.03 lb/gal)(less water and exempt compounds), or less for automated adhesive application and assembly processes	SJVAPCD BACT Guideline 4.9.9 (9/26/03)
	2) Use of adhesive with VOC content of 76.5 g/l (0.6 lb/gal) (less water and exempt compounds), or less for manually applied adhesive operation when assembling	
Adhesive Application for Multi-Wall Packaging Manufacturing	1) Adhesives with a VOC content of ≤ 0.2 lb/gal (24.0 g/l) (excluding water and exempt compounds) for the adhesion of plastic film to porous material	SJVAPCD BACT Guideline 4.9.10 (11/18/04)
	 Adhesives with a VOC content of ≤ 0.13 lb/gal (15.6 g/l) (excluding water and exempt compounds) for the adhesion of porous materials 	
Corrugated Box Gluer	Use of adhesives with a VOC content (less water and exempt compounds) not exceeding 0.044 lb/gal (5.3 g/l)	SJVAPCD BACT Guideline 4.9.12 (9/22/06)
Corrugated Cardboard Manufacturing (Corrugator)	Adhesives – 0.015 lb/VOC/gal (1.8 g/l) (less water and exempt compounds)	SJVAPCD BACT Guideline 4.9.13 (1/30/15)

⁽A) Also listed in EPA's Control Techniques Guidelines for Miscellaneous Industrial Adhesives (EPA-453/R-08-005 (9/08)).

Table 2 VOC Content for Adhesive Primers			
Type of Adhesive Primer	VOC Limits g/l (lbs/gal) (A)	Source	
Automotive Glass	700 (5.8)	SMAQMD Rule 460, SCAQMD Rule 1168, SJVAPCD Rule 4653, SDCAPCD Rule 67.21, BAAQMD Rule 51	
Plastic Cement Welding	400 (3.3)	SMAQMD Rule 460, SJVAPCD Rule 4653,	
Single-Ply Roof Membrane	250 (2.1)	SMAQMD Rule 460, SJVAPCD Rule 4653, SDCAPCD Rule 67.21	
Traffic Marking Tape	150 (1.3)	SMAQMD Rule 460, SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21, BAAQMD Rule 51	
Other	250 (2.1) (A)	SMAQMD Rule 460, SDCAPCD Rule 67.21, BAAQMD Rule 51	

⁽A) Also listed in EPA's Control Techniques Guidelines for Miscellaneous Industrial Adhesives (EPA-453/R-08-005 (9/08)).

Table 3 VOC Content for Contact Adhesives			
Type of Contact Adhesive	VOC Limits g/l (lbs/gal)	Source	
Contact Adhesive	80 (0.7)	SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21	
Contact Adhesive – Specialty Substrate	250 (2.1)	SMAQMD Rule 460, SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21	

Table 4 VOC Content for Sealants			
Type of Sealant	VOC Limits g/l (lbs/gal)	Source	
Architectural	•		
Clear, Paintable, and Immediately Water-Resistant Sealant	380 (3.2)	SCAQMD Rule 1168	
Grout	65 (0.5)	SCAQMD Rule 1168	
Foam Sealant	250 (2.1)	SCAQMD Rule 1168	
Roadway Sealant	250 (2.1)	SMAQMD Rule 460, SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21, BAAQMD Rule 51	
Non-Staining Plumbing Putty	150 (1.6)	SCAQMD Rule 1168	

Table 4 VOC Content for Sealants			
Type of Sealant	VOC Limits g/l (lbs/gal)	Source	
Roof Sealant	250 (2.1)	SCAQMD Rule 1168	
All Other Architectural Sealants	50 (0.4)	SCAQMD Rule 1168	
Marine Deck	760 (6.3)	SMAQMD Rule 460, SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21, BAAQMD Rule 51	
All Other Sealants	250 (2.1)	SCAQMD Rule 1168	

Table 5 VOC Content for Sealant Primers			
Type of Sealant Primer	VOC g/l (lbs/gal)	Source	
Architectural Nonporous Porous	250 (2.1) 775 (6.5)	SMAQMD Rule 460, SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21, BAAQMD Rule 51	
Marine Deck	760 (6.3)	SMAQMD Rule 460, SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21	
Modified Bituminous	500 (4.2)	SJVAPCD Rule 4653, SCAQMD Rule 1168	
Other	750 (6.3)	SMAQMD Rule 460, SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21, BAAQMD Rule 51	

Table 6 VOC Content for Adhesives Applications onto Substrates			
Adhesive Applications onto Substrates	VOC Limits g/l (lbs/gal)	Source	
Flexible Vinyl (A)	250 (2.1)	SMAQMD Rule 460	
Fiberglass	80 (0.7)	SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21	
Metal (A)	30 (0.3)	SMAQMD Rule 460, SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21, BAAQMD Rule 51	
Porous Material	50 (0.4)	SMAQMD Rule 460, SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21, BAAQMD Rule 51	
Rubber (A)	250 (2.1)	SMAQMD Rule 460	

Table 6 VOC Content for Adhesives Applications onto Substrates				
Adhesive Applications onto Substrates	VOC Limits g/l (lbs/gal)	Source		
Wood (A)	30 (0.3)	SJVAPCD Rule 4653, SCAQMD Rule 1168, SDCAPCD Rule 67.21		
Plastic Foam	50 (0.4)	SJVAPCD Rule 4653, SCAQMD Rule 1168		
Reinforced Plastic Composite	200 (1.7)	SCAQMD Rule 1168, SJVAPCD Rule 4653		
Other Substrates (A)	250 (2.1)	SMAQMD Rule 460, SJVAPCD Rule 4653, SDCAPCD Rule 67.21, BAAQMD Rule 51		

⁽A) All of the listed substrates and limits, except fiberglass, are listed in EPA's Control Techniques Guidelines for Miscellaneous Industrial Adhesives (EPA-453/R-08-005 (9/08)).

Table 7 Maximum VOC Content Percentages for Aerosol Adhesives (Percent by VOC by Weight)			
Type of Solvent Cleaning Operation	VOC Content Limit (Percent of VOC by Weight)	Source	
Adhesives – Aerosol Mist Spray Adhesives Web Spray Adhesives	65% 55%	SMAQMD Rule 460	
Special Purpose Spray Adhesives Mounting, Automotive Engine Compartment, and Flexible Vinyl Adhesives Polystyrene Foam and Automobile Headliner Adhesives Polyolefin and Laminate Repair/Edge banding Adhesives	70% 65% 60%	SMAQMD Rule 460	

S	Table 8 Solvent Cleaning VOC Limits		
Type of Solvent Cleaning Operation	VOC Content Limit grams of VOC/liter of material (lb/gal)	Source	
Product cleaning during manufacturing process or surface preparation for adhesive application			
General	25 (0.2)	SJVAPCD Rule 4653	
Repair and maintenance cleaning	25 (0.2)	SJVAPCD Rule 4653	
Cleaning of adhesive application equipment	25 (0.2)	SJVAPCD Rule 4653	

	Table 9 Stripper VOC Limits	
	VOC Content g/l (lbs/gal) including water and exempt compounds	VOC Composite Partial Pressure Millimeters of Mercury at 20 °C (68 °F)
Adhesive or Sealant Products on Wood	≤ 70 (≤ 0.6) (A)	≤ 2 (B)
Adhesive or Sealant Products on Substrates		≤ 9.5 (B)

APPROVED BY:	Brian F Krebs	DATE:	11-15-2022
--------------	---------------	-------	------------

⁽A) VOC limit is based on SDCAPCD Regulation IV, Rule 67.21.(B) VOC vapor pressure limit is based on SMAQMD Regulation IV, Rule 460.

Appendix A

Review of BACT Determinations published by Other Air Districts

SMAQMD BACT CLEARINGHOUSE

Equipment Information Equipment Information Equipment Information	dhesive Applicatio
Permit Number: 26136 Equipment Description: Adhesive Application Unit Size/Rating/Capacity: SUNERGY CALIFORNIA LLC 4741 URBANI AVE MCCLELLAN, CA BACT Determination Information ROCs Standard: Technology Description: Basis: Achieved in Practice SOX Standard: Technology Description: Basis: Achieved in Practice PM10 Standard: Technology Description: Basis: Achieved in Practice PM2.5 PM2.5 PM2.5 CO Standard: Technology Description: Basis: Achieved in Practice Spray booth with dry filters or waterwash Description: Basis: Achieved in Practice PM2.5 Standard: Technology Description: Basis: Achieved in Practice PM2.5 Standard: Technology Description: Basis: Achieved in Practice PM2.5 Standard: Technology Description: Basis: Achieved in Practice Standard: Technology Description: Basis: Achieved in Practice Standard: Technology Description: Basis: Achieved in Practice Standard: Technology Description: Basis: Standard: Standard: Standard: Standard: Technology Description: Basis: Standard: S	5/24/2019
Equipment Description: Unit Size/Rating/Capacity: Equipment Location: Virginia Standard: Technology Description: Basis: SOX Standard: Technology Description: Basis: PM10 Standard: Technology Description: Basis: PM25 Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: Sox Standard: Technology Description: Basis: Sox Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: Sox Standard: Technology Description: Basis: Sox Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: Sox Standard: Technology Description: Basis: Standard: Technology Description: Basis: Standard: Technology Description: Basis: Standard: Technology Description: Basis: Standard:	
Unit Size/Rating/Capacity: Equipment Location: <pre></pre>	
Equipment Location: SUNERGY CALIFORNIA LLC 4741 URBANI AVE MCCLELLAN, CA BACT Determination Information ROCs Standard: Technology Description: Basis: Achieved in Practice NOX Standard: Technology Description: Basis: SOX Standard: Technology Description: Basis: PM10 Technology Description: Basis: PM2.5 Standard: Technology Description: Basis: Achieved in Practice Spray booth with dry filters or waterwash Description: Basis: CO Standard: Technology Description: Basis:	
Equipment Location: SUNERGY CALIFORNIA LLC 4741 URBANI AVE MCCLELLAN, CA BACT Determination Information ROCs Standard: Technology Description: Basis: Achieved in Practice NOX Standard: Technology Description: Basis: SOX Standard: Technology Description: Basis: PM10 Standard: Technology Description: Basis: PM2.5 Standard: Technology Description: Basis: Achieved in Practice PM2.5 Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: Spray booth with dry filters or waterwash Description: Basis: CO Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: Co Standard: Technology Description: Basis: SUNERGY CALIFORNIA LLC 4741 URBANI AVE MCCLELLAN, CA BACH Frechnology Description: Basis: LEAD Standard: SUNERGY CALIFORNIA STATURE ATATUREANI AVE MCCLELLAN, CA BACH Frechnology Description: Basis: SUNERGY CALIFORNIA STATUREANI AVE MCCLELLAN, CA BACH Frechnology Description: Basis: SUNERGY CALIFORNIA STATUREANI AVE MCCLELLAN, CA BACH Frechnology Description: Basis: LEAD Standard: SUNERGY CALIFORNIA STATUREANIA STAT	IRFD
ROCs Standard: Technology Description: Basis: Achieved in Practice NOX Standard: Technology Description: Basis: Sox Standard: Technology Description: Basis: Sox Standard: Technology Description: Basis: PM10 Standard: Technology Description: Basis: PM2.5 Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: Spray booth with dry filters or waterwash Description: Basis: CO Standard: Technology Description: Basis: Standard: Standard:	
ROCs Standard: Technology Description: Basis: Achieved in Practice NOX Standard: Technology Description: Basis: SOX Standard: Technology Description: Basis: PM10 Standard: Technology Description: Basis: PM2.5 PM2.5 CO Standard: Technology Description: Basis: Spray booth with dry filters or waterwash Description: Basis: CO Standard: Technology Description: Basis: Spray booth with dry filters or waterwash Description: Basis: Spray booth with dry filters or waterwash Description: Basis: Spray booth with dry filters or waterwash Description: Basis: Spray booth with dry filters or waterwash	
ROCs Standard: Technology Description: Basis: Achieved in Practice	
Technology Description: Basis: Achieved in Practice NOX Standard: Technology Description: Basis: SOX Standard: Technology Description: Basis: PM10 Standard: Technology Description: Basis: PM2.5 Fenology Description: Basis: Achieved in Practice PM2.5 Standard: Technology Description: Basis: Achieved in Practice PM2.5 Standard: Technology Description: Basis: Achieved in Practice Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: Standard: Technology Description: Basis: Standard: Stand	
Description: Basis: Achieved in Practice NOX Standard: Technology Description: Basis: SOX Standard: Technology Description: Basis: PM10 Standard: Technology Description: Basis: Achieved in Practice PM2.5 Standard: Technology Description: Basis: Achieved in Practice PM2.5 CO Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: LEAD Standard:	
Basis: Achieved in Practice NOX Standard: Technology Description: Basis: SOX Standard: Technology Description: Basis: PM10 Standard: Technology Description: Basis: Achieved in Practice PM2.5 Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: Spray booth with dry filters or waterwash Description: Basis: Spray booth with dry filters or waterwash Description: Basis: CO Standard: Technology Description: Basis: LEAD Standard:	
NOX Standard: Technology Description: Basis: SOX Standard: Technology Description: Basis: PM10 Standard: Technology Description: Basis: Achieved in Practice PM2.5 Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: Spray booth with dry filters or waterwash Spray booth with dry filters or waterwash Technology Description: Basis: CO Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: LEAD Standard:	
Technology Description: Basis: SOX Standard: Technology Description: Basis: PM10 Standard: Technology Description: Basis: Achieved in Practice PM2.5 Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: CO Standard: Technology Description: Basis:	
Description: Basis: SOX Standard: Technology Description: Basis: PM10 Standard: Technology Description: Basis: Achieved in Practice PM2.5 Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: Spray booth with dry filters or waterwash Spray booth with dry filters or waterwash Spray booth with dry filters or waterwash Description: Basis: CO Standard: Technology Description: Basis: LEAD Standard:	
Basis: SOX Standard: Technology Description: Basis: PM10 Standard: Technology Description: Basis: Achieved in Practice PM2.5 Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: LEAD Standard:	11
SOX Standard: Technology Description: Basis: PM10 Standard: Technology Description: Basis: Achieved in Practice PM2.5 Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: Standard: Technology Description: Basis: LEAD Standard:	
Technology Description: Basis: PM10 Standard: Technology Description: Basis: Achieved in Practice PM2.5 Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: LEAD Standard:	
Description: Basis: PM10 Standard: Technology Description: Basis: Achieved in Practice PM2.5 Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: Standard: Technology Description: Basis: Standard: Technology Description: Basis: LEAD Standard:	
Basis: PM10 Standard: Technology Description: Basis: Achieved in Practice PM2.5 Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: Standard: Technology Description: Basis: Standard: Technology Description: Basis: Standard: Technology Description: Basis: LEAD Standard:	
PM10 Standard: Technology Description: Basis: Achieved in Practice PM2.5 Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: Standard: Technology Description: Basis: Standard: Technology Description: Basis: LEAD Standard:	
Technology Description: Basis: Achieved in Practice PM2.5 Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: LEAD Standard: Spray booth with dry filters or waterwash Description: Basis: LEAD Standard: Spray booth with dry filters or waterwash Description: Basis: LEAD Standard:	
Description: Basis: Achieved in Practice PM2.5 Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: LEAD Standard: Standard: Achieved in Practice Spray booth with dry filters or waterwash Description: Basis: LEAD Standard:	
PM2.5 Standard: Technology Description: Basis: CO Standard: Technology Description: Basis: LEAD Standard: Spray booth with dry filters or waterwash Description: Basis: Spray booth with dry filters or waterwash Description: Basis: Spray booth with dry filters or waterwash Description: Basis: LEAD Standard:	
Technology Description: Basis: CO Standard: Technology Description: Basis: LEAD Standard:	
Description: Basis: CO Standard: Technology Description: Basis: LEAD Standard:	
Basis: CO Standard: Technology Description: Basis: LEAD Standard:	
CO Standard: Technology Description: Basis: LEAD Standard:	
Technology Description: Basis: LEAD Standard:	
Description: Basis: LEAD Standard:	
Basis: LEAD Standard:	
LLAD	
LLAD	
Description:	
Basis:	
Comments: VOC BACT determination consists of 9 tables that are included in the BACT determination evaluation	n

Printed: 6/10/2019

SMAQMD BACT CLEARINGHOUSE

CATEGOR	Y:	Coa	atina - Adhesives		
BACT Size			Adhesive Appli	cation Operation	
BACT Det	ermination Number	er: 227	BACT Determination Date:	5/24/2019	
		Equipmen	nt Information		
Permit Nu	mber: 26136				
Equipmen	t Description:	Adhesive Application	Operation		
Unit Size/I	Rating/Capacity:	>=1,170 lb/month or >	4,019 lb/yr EXPIRED		
Equipmen	t Location:	SUNERGY CALIFOR	NIA LLC		
		4741 URBANI AVE			
		MCCLELLAN, CA			
		BACT Determin	ation Information		
ROCs	Standard:				
	Technology Description:	Compliance with adhesive BA	ACT VOC limits (see comment)		
	Basis:	Achieved in Practice			
NOx	Standard:				
	Technology Description:				
	Basis:				
SOx Standard:					
	Technology				
	Description:				
	Basis:				
PM10	Standard: Technology	Spray booth with dry filters or	waterwash		
	Description:	, , , , , , , , , , , , , , , , , , , ,			
	Basis:	Achieved in Practice			
PM2.5	Standard:				
	Technology	Spray booth with dry filters or	waterwash		
	Description:	Achieved in Practice			
	Basis: Standard:	Achieved in Practice			
CO	Technology				
	Description:				
	Basis:				
LEAD	Standard:				
LLAD	Technology				
	Description:				
	Basis:				
	with ≥90% collection	n efficiency and ≥ 95% destruct			
Printed: 6/10/2	Jointuct.	riole No (9	10) 014 - 4030 email. Diceos@airquair	iy.org	

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT Best Available Control Technology (BACT) Guidelines for Non-Major Polluting Facilities*

10-20-2000 Rev. 0 2-1-2019 Rev 1 2-5-2021 Rev. 2

Equipment or Process: Spray Booth

	Criteria Pollutants]
Subcategory/ Rating/Size	VOC	NOx	SOx	CO	PM10	Inorganic
Fully-enclosed, Down-Draft Type, < 667 Lbs/Month of VOC Emissions (2-5-2021)	Compliance with Applicable Regulation XI Rules (10-20-2000)	If booth has a Make-up Air Unit or a Heater; Compliance with Rule 1147 (2-5-2021)			Dry Filters or Waterwash (1990)	
Other Types, < 1170 Lbs/Month of VOC Emissions	Compliance with Applicable Regulation XI Rules (10-20-2000)	If booth has a Make-up Air Unit or a Heater; Compliance with Rule 1147 (2-5-2021)			Same as Above (1990)	
Fully-enclosed, Down-Draft Type, ≥ 22 Lbs/Day of VOC Emissions (2-5-2021)	Compliance with Applicable Regulation XI Rules, and VOC Control System with ≥ 90% Collection Efficiency and ≥ 95% Destruction Efficiency, or Use of Super Compliant Materials (<50 grams of VOC per liter of material): or Use of Low-VOC Materials Resulting in an Equivalent Emission Reduction (10-20-2000)	If booth has a Make-up Air Unit or a Heater; Compliance with Rule 1147 (2-5-2021)			Same as Above (1990)	

^{*} Means those facilities that are not major polluting facilities as defined by Rule 1302 - Definitions

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT Best Available Control Technology (BACT) Guidelines for Non-Major Polluting Facilities*

Other Types, ≥ 1170 Lbs/Month of VOC Emissions	- Compliance with Applicable Regulation XI Rules, and VOC Control System with ≥ 90% Collection Efficiency and ≥ 95% Destruction Efficiency, or - Use of Super Compliant Materials (<50 grams of VOC per liter of material): or - Use of Low-VOC Materials Resulting in an Equivalent Emission Reduction (10-20-2000)	If booth has a Make-up Air Unit or a Heater; Compliance with Rule 1147 (2-5-2021)	Same as Above (1990)	
Enclosed with automated spray nozzles for wood cabinets, < 1170 Lbs/Month of VOC Emissions (2-5-2021)	Compliance with Rule 1136 or use of Rule 1136 compliant UV/EB or water-based coatings.	If booth has a Make-up Air Unit or a Heater; Compliance with Rule 1147		

Note: The sum of all VOC emissions from all spray booths within the same subcategory applied for in the previous two years at the same facility are considered toward the emission threshold.

BACT Guidelines - Part D 118 Spray Booth

^{*} Means those facilities that are not major polluting facilities as defined by Rule 1302 - Definitions

Best Available Control Technology (BACT) Guideline 4.9.1*

Last Update: 8/21/2020

Adhesives Application - Tire Retreading

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Use of adhesives with a VOC content of 100 gram per liter (less water and	Use of adhesives with zero VOC content	
exempt compounds)	 Capture of VOCs and thermal or catalytic oxidation or equivalent achieving 98% control 		
		Capture of VOCs and carbon adsorption or equivalent achieving 95% control	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source

San Joaquin Valley Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.9.2*

Last Update: 5/11/2022

Adhesive Application Operation - Rubber Parts and Products, Brush Applied *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.9.3*

Last Update: 5/11/2022

Adhesive Application Process - Foam Products *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source

San Joaquin Valley Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.9.4*

Last Update: 4/3/2000

Adhesive Application Process - Non-Porous Materials, Specialty Contact Adhesives, Spray Application

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
voc	Using adhesives with a VOC content of 540 grams/liter or less (less water and exempt compounds) until July 1, 2000. Using adhesives with a VOC content of 400 grams/liter or less (less water and exempt compounds) after July 1, 2000.	VOC capture and control with thermal or catalytic incineration VOC capture and control with carbon adsorption	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source

San Joaquin Valley Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.9.5*

Last Update: 5/11/2022

Adhesive Application Process - Wooden case manufacturing *RESCINDED*

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.9.7*

Last Update: 8/3/2001

Corrugated PVC Sheet Products - Special Contact Adhesive, Roller Applied

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
voc	PVC welding adhesive compliant with District Rule 4653	1. Thermal / catalytic incinerator. 2. Carbon adsorption system. 3. Low VOC adhesive (= or < 0.3 lb/gal, less water and exempt compounds).	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source

San Joaquin Valley Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.9.8*

Last Update: 11/20/2001

Adhesive Application Process – Wooden Door Assembly, Roller applied

Pollutant	Achieved in Practice or	Technologically	Alternate Basic
	contained in the SIP	Feasible	Equipment
voc	Use of an adhesive with a VOC content of 5.0 grams/liter (less water and exempt compounds), or less.	Thermal incineration Carbon Adsorption or Use of an adhesive with a VOC content of 1.0 grams/liter (less water or exempt compounds), or less.	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.9.9*

Last Update: 9/26/2003

Adhesive Application Process - Vinyl Door and Window Assembly, Non-Spray Applied

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
voc	1) Use of adhesive with VOC content of 3.0 g/l (less water and exempt compounds), or less for automated adhesive application and assembly processes 2) Use of adhesive with VOC content of 76.5 g/l (less water and exempt	Thermal Oxidizer Carbon Adsorption	
	compounds), or less for manually applied adhesive operations when assembling custom window assemblies		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.9.10*

Last Update: 11/18/2004

Adhesive Application for Multi-Wall Packaging Manufacturing

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
voc	adhesives with a VOC content of <= 0.2 lb/gal (excluding water and exempt compounds) for the adhesion of plastic film to porous material	Capture and thermal incineration Capture and carbon adsorption	
	adhesives with a VOC content of <= 0.13 lb/gal (excluding water and exempt compounds) for the adhesion of porous materials		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source

San Joaquin Valley Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.9.11*

Last Update: 11/3/2005

Adhesive Application Operation - Bonding of Fiberglass Boat Hulls and Decks, Non-Atomizing Application

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	use of adhesives with VOC content of 80 grams/liter or	1. VOC capture and incineration	
	less (less water and exempt compounds)	2. VOC capture and carbon adsorption	
	,	use of low VOC content adhesives with VOC content of 50 grams/liter or	
		less (less water and exempt compounds)	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.9.12*

Last Update: 8/29/2018

Corrugated Box Gluer

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Use of adhesives with a	1. VOC Capture and Thermal/Catalytic	
	VOC content of 0.021 lb- VOC/gal (less water and	Oxidation	
	exempt compounds)	2. VOC Capture and Carbon Adsorption	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source

San Joaquin Valley Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.9.13*

Last Update: 8/29/2018

Corrugated Board Manufacturing (Corrugator)

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
voc	Steam conditioning of	VOC Capture and Thermal/Catalytic Oxidation	
	paper - 3.5 lb-VOC/10^6 sq ft;	Oxidation	
		VOC Capture and Carbon Adsorption	
	Adhesives - 0.015 lb- VOC/gal (less water and exempt compounds)		

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

Best Available Control Technology (BACT) Guideline 4.9.14*

Last Update: 6/6/2019

Wood Parts and Products Subfloor Adhesive Application Operation

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
voc	Use of adhesives and solvents with a VOC content and application methods compliant with District Rule 4653 (Adhesives and Sealants)	 At least 98% overall capture and control using a properly designed capture system served by a thermal/catalytic oxidizer, or other equivalent control achieving device or technology 	
		 At least 95% overall capture and control using a properly designed capture system served by a carbon adsorption system, or other equivalent control achieving device or technology 	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

SDAPCD BACT

ADHESIVE MATERIAL APPLICATION OPERATIONS (<10 gal/day) Fee Schedules 27 U, V, & W

Review the BACT Control Option listed below. The applicant must propose the Control Option listed or perform a Top-down BACT Analysis as described in Section 4 to justify the selection of another Control Option. The applicant will be required to provide documentation that the Control Option selected meets the requirements listed in the table.

	VOC	NOx	SOx	PM
BACT Emission Rate Limit	Not Determined	(N/A)	(N/A)	Not Determined
BACT Control Option	Compliance with Rule 67.21, Adhesive Material Application Operations (A/P)	(N/A)	(N/A)	Spray booth if used, shall be equipped with over spray filters. (A/P)

The applicant may choose to limit the Potential to Emit (PTE) from the equipment to less than 10 pounds per day for each pollutant in lieu of meeting the stated BACT requirement

(This table does not apply to operations applying, on average, 10 or more gallons of adhesive application materials per day.)

Appendix B

Cost Effectiveness Determination for Carbon Adsorption and Thermal Oxidizers

COST EFFECTIVENESS ANALYSIS FOR CARBON ADSORPTION

	Da	ita Inputs	
Select the type of carbon adsorber system:		Fixed-Bed Carbon Adsorber with	Steam Regeneration RESET
For fixed-bed carbon adsorbers, provide the following information: Select the type of operation: Select the type of material used to fabricate the carbon adsorber vessels: Select the orientation for the adsorber vessels:		Stainless Steel, 304	
Enter the design data for the proposed Fixed-Bed Carbon Adsorb	per with Steam Regeneration	on	
Number of operating hours per year (Θ _s)	2,080 hou	rs/year	
Waste Gas Flow Rate (Q)	10,000 acfr	m (at atmospheric pressure and 77°F)	
VOC Emission Rate (m _{voc})	3.560 lbs/	/hour	
Required VOC removal efficiency (E)	90 per	cent	
Superficial Bed Velocity (v _b)	75.00 ft/n	nin	
Estimated equipment life of adsorber vessels and auxiliary Equipment (n)	15 Yea	rs*	* 15 years is a default equipment life. User should enter actual value, if known.
Estimated Carbon life (n)	5 Yea	rs	
Total Number of carbon beds (N _{total})	3 Bed	s*	* 3 beds is the default. User should enter actual number of beds, if known.
Number of carbon beds adsorbing VOC when system is operating (N _A)	2 Bed	s*	* 2 beds is the default. User should enter actual number of beds, if known.
Total time for adsorption (Θ_A)	12 hou	rs*	* 12 hours is a default value. User should enter actual value, if known.
Total time for desorption (Θ_D)	5 hou	rs*	* 5 hours is a default value. User should enter actual value, if known.
Estimated Carbon Replacement Rate (CRR)	379 lbs/	/hour*	* 379 lbs./hour is a default value. User should enter actual value, if known.

er the Characteristics of the VOC/HAP:							
me of VOC/HAP	Toluene						
tial Pressure of Toluene in waste gas stream	0.0104 psia						
rameter "k" for Toluene	0.551 Note:						
	Typical values of "k" and "m" for some	1					
ameter "m" for Toluene	0.110 common VOCs are shown in Table A.						
er the cost data for the carbon adsorber:							
to did the control of	2022						
ired dollar-year	2022						
CI* for 2022	567.5 CEPCI value for 2022		390.6	1999			
nual Interest Rate (i)	4 percent (Current bank prime rat	e)					
		ation or de-escalation, but is there me	erely to allow for ava	ilability of a well-k	nown cost		
x to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acc		ation or de-escalation, but is there me	erely to allow for ava	ilability of a well-k	nown cost		
ex to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acc ctricity (P _{elec})	ceptable.	ation or de-escalation, but is there me *S5.00/1,000 lbs is a default					
x to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is a contribute of the specific property of the	\$0.1380 per kWh		value. User should e	enter actual value,	if known.		
ex to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is a contribute of the spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is a contribute of the spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is a contribute of the spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is a contribute of the spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is a contribute of the spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is a contribute of the spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is a contribute of the spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is a contribute of the spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is a contribute of the spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is a contribute of the spreadsheet users. Use of the spreadsheet users (e.g., M&S) is a contribute of the spreadsheet users (e.g., M&S) is a cont	\$0.1380 per kWh \$5.00 per 1,000 lbs*	* \$5.00/1,000 lbs is a default	value. User should e fault value. User sho	enter actual value, uid enter actual va	if known. Ilue, if known.		
x to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is a contricity (P_{eloc}) am (P_{s}) ling Water (P_{cw}) prator Labor Rate	\$0.1380 per kWh \$5.00 per 1,000 lbs* \$3.55 per 1,000 gallons of water*	* \$5.00/1,000 lbs is a default * \$3.55/1,000 gallons is a def	value. User should e fault value. User sho lue. User should ente	enter actual value, uld enter actual va er actual value, if k	if known. Ilue, if known. nown.	is not known, use 1.	l.10 x operat
tricity (P_{elec}) Im (P_s) Im Water (P_{ew}) rator Labor Rate Internance Labor Rate	\$0.1380 per kWh \$5.00 per 1,000 lbs* \$3.55 per 1,000 gallons of water* \$27.48 per hour*	* \$5.00/1,000 lbs is a default * \$3.55/1,000 gallons is a def * \$27.48/hour is a default val	value, User should e fault value, User sho lue, User should entr lue, User should entr	enter actual value, uild enter actual va er actual value, if k er actual value, if k	if known. Ilue, if known. nown. nown. If the rate		l. 10 x operat
CPCI is the Chemical Engineering Plant Cost Index. The use of CEPCI in this spread ex to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is according to the cost (Pelac) am (P _a) Diling Water (P _{cw}) erator Labor Rate intenance Labor Rate bon Cost (CC)	\$0.1380 per kWh \$5.00 per 1,000 lbs* \$3.55 per 1,000 gallons of water* \$27.48 per hour* \$30.23 per hour* \$4.20 per lb	*\$5.00/1,000 lbs is a default *\$3.55/1,000 gallons is a default val *\$37.48/hour is a default val *\$30.23/hour is a default val	value. User should de fault value. User should entroue. User should entroue. User should entroue. User should entrous	enter actual value, juid enter actual va er actual value, if k er actual value, if k et price. User shoul	if known. Ilue, if known. nown. nown. If the rate Id enter actual vi	alue, if known.	
exto spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is a contribute (Pelac) am (P _s) liling Water (P _{ow}) erator Labor Rate intenance Labor Rate bon Cost (CC) Sale Value of Recovered VOC (P _{voc})	\$0.1380 per kWh \$5.00 per 1,000 lbs* \$3.55 per 1,000 gallons of water* \$27.48 per hour* \$30.23 per hour* \$4.20 per lb \$0.33 per lb*	*\$5.00/1,000 lbs is a default *\$3.55/1,000 gallons is a def *\$27.48/hour is a default valu *\$30.23/hour is a default valu *\$4.20/lb is a default value b	value. User should default value. User should ente lue. User should ente lue. User should ente lue. User should ente lue. User should ente or recovered toluene	enter actual value, juid enter actual va er actual value, if k er actual value, if k et price. User shoul e based on 2018 da	if known. Ilue, if known. nown. nown. If the rate Id enter actual vi	alue, if known. enter actual value o	of
ex to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is a contractive (P_{eloc}) am (P_{a}) bling Water (P_{cw}) erator Labor Rate intenance Labor Rate	\$0.1380 per kWh \$5.00 per 1,000 lbs* \$3.55 per 1,000 gallons of water* \$27.48 per hour* \$30.23 per hour* \$4.20 per lb	*\$5.00/1,000 lbs is a default *\$3.55/1,000 gallons is a def *\$27.48/hour is a default value *\$30.23/hour is a default value b *\$4.20/lb is a default value fo	value. User should default value. User should ente lue. User should ente lue. User should ente lue. User should ente lue. User should ente or recovered toluene	enter actual value, juid enter actual va er actual value, if k er actual value, if k et price. User shoul e based on 2018 da	if known. Ilue, if known. nown. nown. If the rate Id enter actual vi	alue, if known. enter actual value o	of
extricity (P _{elec}) am (P _s) ling Water (P _{ow}) erator Labor Rate ntenance Labor Rate poon Cost (CC) Sale Value of Recovered VOC (P _{voc}) posal/Treatment Cost for Recovered VOC (D _{voc})	\$0.1380 per kWh \$5.00 per 1,000 lbs* \$3.55 per 1,000 gallons of water* \$27.48 per hour* \$30.23 per hour* \$4.20 per lb \$0.33 per lb* \$0.00 per lb*	*\$5.00/1,000 lbs is a default *\$3.55/1,000 gallons is a def *\$27.48/hour is a default value *\$30.23/hour is a default value b *\$4.20/lb is a default value fo	value. User should default value. User should ente lue. User should ente lue. User should ente lue. User should ente lue. User should ente or recovered toluene	enter actual value, juid enter actual va er actual value, if k er actual value, if k et price. User shoul e based on 2018 da	if known. Ilue, if known. nown. nown. If the rate Id enter actual vi	alue, if known. enter actual value o	of
tricity (P _{elec}) tricity (P _{el}	\$0.1380 per kWh \$5.00 per 1,000 lbs* \$3.55 per 1,000 gallons of water* \$27.48 per hour* \$30.23 per hour* \$4.20 per lb \$0.33 per lb* \$0.00 per lb*	*S5.00/1,000 lbs is a default *S3.55/1,000 gallons is a def *S27.48/hour is a default valu *S30.23/hour is a default value b *S0.33/lb is a default value for d	value. User should default value. User should ente lue. User should ente lue. User should ente lue. User should ente lue. User should ente or recovered toluene	enter actual value, juid enter actual va er actual value, if k er actual value, if k et price. User shoul e based on 2018 da	if known. Ilue, if known. nown. nown. If the rate Id enter actual vi	alue, if known. enter actual value o	of
extricity (P _{elec}) am (P _s) ling Water (P _{cw}) reator Labor Rate ntenance Labor Rate on Cost (CC) Sale Value of Recovered VOC (P _{voc}) posal/Treatment Cost for Recovered VOC (D _{voc}) nown, enter any additional costs for site preparation and building of Preparation (SP) =	\$0.1380 per kWh \$5.00 per 1,000 lbs* \$3.55 per 1,000 gallons of water* \$27.48 per hour* \$30.23 per hour* \$4.20 per lb \$0.33 per lb* \$0.00 per lb*	*\$5.00/1,000 lbs is a default *\$3.55/1,000 gallons is a def *\$27.48/hour is a default value *\$30.23/hour is a default value b *\$4.20/lb is a default value for d *\$50.33/lb is a default value for d tual value, if known.	value. User should default value. User should ente lue. User should ente lue. User should ente lue. User should ente lue. User should ente or recovered toluene	enter actual value, juid enter actual va er actual value, if k er actual value, if k et price. User shoul e based on 2018 da	if known. Ilue, if known. nown. nown. If the rate Id enter actual vi	alue, if known. enter actual value o	of
extricity (P _{elec}) am (P _{el}) Bling Water (P _{ow}) Prator Labor Rate intenance Labor Rate bon Cost (CC) Sale Value of Recovered VOC (P _{voc}) posal/Treatment Cost for Recovered VOC (D _{voc}) nown, enter any additional costs for site preparation and building of Preparation (SP) = Idings (Bldg) =	\$0.1380 per kWh \$5.00 per 1,000 lbs* \$3.55 per 1,000 gallons of water* \$27.48 per hour* \$30.23 per hour* \$4.20 per lb \$0.33 per lb* \$0.00 per lb* construction/modification: \$0 Default value. User should enter ac	*\$5.00/1,000 lbs is a default *\$3.55/1,000 gallons is a def *\$27.48/hour is a default value *\$30.23/hour is a default value b *\$4.20/lb is a default value for d *\$50.33/lb is a default value for d tual value, if known.	value. User should default value. User should ente lue. User should ente lue. User should ente lue. User should ente lue. User should ente or recovered toluene	enter actual value, juid enter actual va er actual value, if k er actual value, if k et price. User shoul e based on 2018 da	if known. Ilue, if known. nown. nown. If the rate Id enter actual vi	alue, if known. enter actual value o	of
exto spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is a contribute (Pelec) and (P _s) bling Water (P _{ow}) crator Labor Rate intenance Labor Rate bon Cost (CC) Sale Value of Recovered VOC (P _{voc})	\$0.1380 per kWh \$5.00 per 1,000 lbs* \$3.55 per 1,000 gallons of water* \$27.48 per hour* \$30.23 per hour* \$4.20 per lb \$0.33 per lb* \$0.00 per lb* construction/modification: \$0 Default value. User should enter ac	*\$5.00/1,000 lbs is a default *\$3.55/1,000 gallons is a def *\$27.48/hour is a default value *\$30.23/hour is a default value b *\$4.20/lb is a default value for d *\$0.33/lb is a default value for d tual value, if known. tual value, if known.	value. User should de fault value. User should ente use. User should ente use. User should ente use do not see a sased on 2018 market or recovered toluene	enter actual value, juid enter actual va er actual value, if k er actual value, if k et price. User shoul e based on 2018 da	if known. Ilue, if known. nown. nown. If the rate Id enter actual vi	alue, if known. enter actual value o	of

Cost Estimate

Capital Costs

Estimated capital costs for a Fixed-Bed Carbon Adsorber with Steam Regeneration with the following characteristics:

VOC Controlled/Recovered = Toluene Adsorber Vessel Orientation = Horizontal

Operating Schedule = Continuous Operation

Total Capital Investment (TCI) (in 2020 dollars)		
Parameter	Equation	Cost
Costs for Each Carbon Adsorber Vessel (C _v) =	$271 \times F_m \times S^{0.778} =$	\$25,175
Total Cost for All Carbon Adsorber Vessels and Carbon(EC _{Adsorb}) =	$5.82 \times Q^{-0.133} \times [C_c + (N_A + N_D) \times C_v] =$	\$131,885
Auxiliary Equipment (EC _{aux}) =	(Based on design costs or estimated using methods provided in Section 2)	\$32,000
Total Purchased Equipment Costs for Carbon Adsorber (A) =	= EC _{Adsorb} + EC _{aux} =	\$163,885
Instrumentation =	0.10 × A =	Included in A
Sales taxes =	0.03 × A =	\$4,917
Freight =	0.05 × A =	\$8,194
	Total Purchased Equipment Costs (B) =	\$176,995
	Total Furchased Equipment Costs (b) –	\$170,995
Direct Installation Costs (in 2020 dollars)		
Parameter	Equation	Cost
Foundations and Supports =	0.08 × B =	\$14,160
Handling and Erection =	0.14 × B =	\$24,779
Electrical =	0.04 × B =	\$7,080
Piping =	0.02 × B =	\$3,540
Insulation =	0.01 × B =	\$1,770
Painting =	0.01 × B =	\$1,770
Site Preparation (SP) =		\$0
Buildings (Bldg) =		\$0
	Total Direct Costs (DC) = $B + (0.3 \times B) + SP + Bldg =$	\$230,094

Total Indirect Installation Costs (in 2020 dollars)			
Parameter	Equation	Cost	
Engineering =	0.10 × B =	\$17,700	
Construction and field expenses =	0.05 × B =	\$8,850	
Contractor fees =	0.10 × B =	\$17,700	
Start-up =	0.02 × B =	\$3,540	
Performance test =	0.01 × B =	\$1,770	
	Total Indir	rect Costs (IC) = \$49,559	
Contingency Cost (C) =	CF(IC+DC)=	\$27,965	
Total Capital Investment (TCI) =	DC + IC + C = (1.28 × B) + SP + Bldg. + C =	\$307,618	in 2020 dollar
	Annual Costs		
Direct Annual Costs	Annual Costs		
Direct Annual Costs Parameter	Annual Costs Equation	Cost	
		Cost \$738	
Parameter Annual Electricity Cost =	Equation $Q_{Elec} \times P_{elec} =$		
Parameter Annual Electricity Cost = Annual Steam Cost (C _s) =	Equation $Q_{Elec} \times P_{elec} = 3.50 \times m_{voc} \times \Theta_s \times P_s =$	\$738	
Parameter Annual Electricity Cost = Annual Steam Cost (C _s) = Annual Cooling Water Cost (C _{cs}) =	Equation $Q_{Elec} \times P_{elec} = $ $3.50 \times m_{voc} \times \Theta_s \times P_s = $ $3.43 \times C_s/P_s \times P_{wc} = $	\$738 \$130 \$316	
Parameter Annual Electricity Cost = Annual Steam Cost (C _s) = Annual Cooling Water Cost (C _{cs}) =	Equation $Q_{Elec} \times P_{elec} = \\ 3.50 \times m_{voc} \times \Theta_s \times P_s = \\ 3.43 \times C_s/P_s \times P_{wc} = \\ Operator = 0.5 \text{ hours/shift} \times \text{Labor Rate} \times \text{(Operating hours/8 hours/8)}$	\$738 \$130 \$316 burs/shift) \$3,572	
Parameter Annual Electricity Cost = Annual Steam Cost (C_s) = Annual Cooling Water Cost (C_{cs}) = Operating Labor Costs:	Equation $Q_{Elec} \times P_{elec} = $ $3.50 \times m_{voc} \times \Theta_s \times P_s = $ $3.43 \times C_s/P_s \times P_{wc} = $	\$738 \$130 \$316 burs/shift) \$3,572 \$536	
Parameter Annual Electricity Cost = Annual Steam Cost (C_s) = Annual Cooling Water Cost (C_{cs}) = Operating Labor Costs:	Equation $Q_{Elec} \times P_{elec} = \\ 3.50 \times m_{voc} \times \Theta_s \times P_s = \\ 3.43 \times C_s/P_s \times P_{wc} = \\ Operator = 0.5 \text{ hours/shift} \times \text{Labor Rate} \times \text{(Operating hours/8 hot Supervisor} = 15\% \text{ of Operator}$	\$738 \$130 \$316 burs/shift) \$3,572 \$536	
Parameter	Equation $Q_{Elec} \times P_{elec} = \\ 3.50 \times m_{voc} \times \Theta_s \times P_s = \\ 3.43 \times C_s/P_s \times P_{wc} = \\ Operator = 0.5 \text{ hours/shift} \times \text{Labor Rate} \times \text{(Operating hours/8 hours/shift} \times \text{Labor} = 0.5 \text{ hours/shift} \times \text{Labor Rate} \times \text{(Operating Hours/8 hours/shift} \times (Operating H$	\$738 \$130 \$316 burs/shift) \$3,572 \$536 \$/shift) \$3,930	

\$13,549

in 2020 dollars

Direct Annual Costs (DAC) =

Indirect Annual Costs		Cost	
Parameter			
	= 60% of sum of operator, supervisor, maintenance labor Plus maintenance		
Overhead	materials	\$7,181	
Administrative Charges	= 2% of TCI	\$6,152	
Property Taxes	= 1% of TCI	\$3,076	
Insurance	= 1% of TCI	\$3,076	
Capital Recovery	= $CRF_{Adsorber} \times (TCI - [(1.08 \times CC \times M_c) + (LR \times M_c/CRR)] =$	\$27,508	
Indirect Annual Costs (IAC) =		\$46,994	in 2020 dollars
and the last of th			
Recovered Solvent Credit/Disposal Costs			
Disposal Cost			
Parameter	Equation	Cost	
VOC Disposal/Treatment Costs (Disposal cost)	$= m_{voc} \times \Theta_s \times D_{voc} \times E =$	\$0	
VOC Recovery Credit			
Parameter	Equation	Cost	
Annual Recovery Credit for Condensate (RC)	$= m_{voc} \times \Theta_s \times P_{voc} \times E =$	\$2,199	
Total Annual Cost (TAC) =	DAC + IAC + C + Disposal _{Cost} - RC =	\$58,344	in 2020 dollars
	· COX	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Cost Effectiveness		
Cost Effectiveness			
Parameter	Equation	Cost	

Total Annual Cost (TAC) / Annual Quantity of VOC Removed/Recovered =

\$58,344

3

\$17,509.23

per year in 2020 dollars

per ton of pollutants removed/recovered in 2020 dollars

tons/year

TAC =

 $W_{voc} = m_{voc} \times \Theta_s \times E =$

Total Annual Cost =

Cost Effectiveness =

Annual Quantity of VOC Removed/Recovered =

COST EFFECTIVENESS ANALYSIS FOR THERMAL INCINERATION

				Dat	a Inputs						
Select the type of oxidizer	Regenerative Thermal Oxidiz	er 🔻				RESET					
Enter the following information fo	or your emission so	urce:									
	Com	position of Inlet Ga	is Stream								
Pollutant Name		Concentration (ppmv)	Lower Explosive Limit (LEL) (ppmv)*	Heat of Combustion (Btu/scf)	Molecular Weight	N			neat of combustion a	and molecular weight he table below.	for some
Toluene		40	11,000	4,274	92.13						
									<u>.</u>		
Enter the design data for the pro	posed oxidizer:										
Number of operating hours/year		2,080	hours/year		Percent Energy R	ecovery (HR) =	70 percent	1			
Inlet volumetric flow rate(Qwi) at 77	7°F and 1 atm.	20,000	scfm*	* 20,000 scfm is a default	volumetric flow rate	. User should enter a	ectual value, if known.	J			
Inlet volumetric flow rate(Qwi) (actu	ual conditions)	20,900	acfm*	* 20,900 acfm is a default	volumetric flow rate	e. User should enter a	actual value, if known.				
Pressure drop (ΔP)		19	inches of water	* 23 inches of water is the	e default pressure dr	op for thermal oxidize	ers; 19 inches of water	r is the default pressure	e drop for catalytic oxidi	izers. Enter actual value, if	known.
			* 60% is a default fan effic	iency. User should e	nter actual value, if k	known.					
Inlet Waste Gas Temperature (Twi)		77	°F								
Operating Temperature (T _{fi})		1,900	°F	* Note: Default value for 1	ffi is 2000°F for thern	nal regenerative oxid	fizers. Use actual value	e if known. Tfi for regen	erative oxidizers typical	ly between 1800 and 2000	₽F.
Destruction and Removal Efficiency (DRE) 99 percent* •9			* 99 percent is a default control efficiency. User should enter actual value, if known.								

* 20 years is the typical equipment life. User should enter actual value, if known.

* 1 percent is a default value for the heat loss. User should enter actual value, if known. Heat loss is typically between 0.2 and 1.5%.

20 Years*

1 percent*

Estimated Equipment Life

Heat Loss (η)

Enter the cost data:

Desired dollar-year

CEPCI* for 2022

Annual Interest Rate (i)

Electricity (Cost_{elect})

Natural Gas Fuel Cost (Cost_{fuel})

Operator Labor Rate

Maintenance Labor rate

Contingency Factor (CF)

2022		
541.7	Enter the CEPCI value for 2022	541.7 2016 CEPCI
4	Percent	
0.138	\$/kWh	
0.00804		
	per hour	
	per hour	
10.0	Percent	

* 10 percent is a default value for construction contingencies. User may enter values between 5 and 15 percent.

^{*}CEPCI is the Chemical Engineering Plant Cost Escalation/De-escalation Index. The use of CEPCI in this spreadsheet is not an endorsement of the index for purposes of cost escalation or de-escalation, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Cost Estimate

	Direct Costs	
	Total Purchased equipment costs (in 2020 dollars)	
Incinerator + auxiliary equipment ^a (A) =		
Equipment Costs (EC) for Regenerative Oxidizer	=[2.664 x 100,000 + (13.98 x Qtot)] x (2020 CEPI/2016 CEPCI) =	\$546,548 in 2020 dollars
Instrumentation ^b =	0.10 × A =	\$54,655
Sales taxes =	0.03 × A =	\$16,396
Freight =	0.05 × A =	\$27,327
	Total Purchased equipment costs (B) =	\$644,926 in 2020 dollars
Footnotes a - Auxiliary equipment includes equipment (e.g., dub - Includes the instrumentation and controls furnished)	ct work) normally not included with unit furnished by incinerator vendor.	
5 - Includes the instrumentation and controls runnish	by the memerator vendor.	
	Direct Installation Costs (in 2020 dollars)	
Foundations and Supports =	0.08 × B =	\$51,594
Handlong and Errection =	0.14 × B =	\$90,290
Electrical =	0.04 × B =	\$25,797
Piping =	0.02 × B =	\$12,899
Insulation for Ductwork =	0.01 × B =	\$6,449
Painting =	0.01 × B =	\$6,449
Site Preparation (SP) =		\$0
Buildings (Bldg) =		\$0
	Total Direct Installaton Costs =	\$193,478
Total Direct Costs (DC) =	Total Purchase Equipment Costs (B) + Total Direct Installation Costs =	\$838,404 in 2020 dollars
	Total Indirect Installation Costs (in 2020 dollars)	
Engineering =	0.10 × B =	\$64,493
Construction and field expenses =	0.05 × B =	\$32,246
Contractor fees =	0.10 × B =	\$64,493
Start-up =	0.02 × B =	\$12,899
Performance test =	0.01 × B =	\$6,449
	Total Indirect Costs (IC) =	\$180,579
Continency Cost (C) =	CF(IC+DC)=	\$101,898
Total Capital Investment =	DC + IC +C =	\$1,120,882 in 2020 dollars

	Direct Annual Costs				
Annual Electricity Cost	= Fan Power Consumption × Operating Hours/year × Electricity Price =	\$22,227			
Annual Fuel Costs for Natural Gas	= Cost _{fuel} × Fuel Usage Rate × 60 min/hr × Operating hours/year	\$39,319			
Operating Labor	Operator = 0.5hours/shift × Labor Rate × (Operating hours/8 hours/shift)	\$3,572			
	Supervisor = 15% of Operator	\$536			
Maintenance Costs	Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift)	\$3,930			
	Materials = 100% of maintenance labor	\$3,930			
Direct Annual Costs (DC) =		\$73,514 in 2020 dollars			
	Indirect Annual Costs				
	mancer Annual Costs				
	= 60% of sum of operating, supervisor, maintenance labor and				
Overhead	maintenance materials	\$7,181			
Administrative Charges	= 2% of TCI	\$22,418			
Property Taxes	= 1% of TCI	\$11,209			
Insurance	= 1% of TCI	\$11,209			
Capital Recovery	= CRF[TCI-1.08(cat. Cost)]	\$82,476			
Indirect Annual Costs (IC) =		\$134,493 in 2020 dollars			
Total Annual Cost =	DC + IC =	\$208,007 in 2020 dollars			
	Cost Effectiveness				
Cos	st Effectiveness = (Total Annual Cost)/(Annual Quantity of VOC/HAP Pollutants Destroye	ed)			
	The state of the s	/			
Total Annual Cost (TAC) =	tal Annual Cost (TAC) = \$208,007 per year in 2020 dollars				
VOC/HAP Pollutants Destroyed =	11.8	11.8 tons/year			
ost Effectiveness = \$17,657 per ton of pollutants removed in 2020 dollars					